تحديد النماذج الإحصائي لتقدير عدد حوادث الحريق بعد وقود السيارات بدولة الكويت

دكتور إبراهيم مرجان - دكتور حسين السالموني - دكتور حمدي كمال

مقدمة:

تشتوفد صحة كثير من القرارات الخاطئة بإدارة خطر معين على المعرفة الدقيقة ببولوك هذا الخطر وخبرة الخسائر المرتبطة على حقيقة خلال فترة مئوية في الماضي القريب، وعلى وجود واستخدام الأساليب الرياضية والإحصائية المناسبة في التنبؤ بما سرك على خبرة هذه الخسائر مستقبلًا. يمكن تحليل المعرفة الدقيقة ببولوك وخبرة الخسائر في الماضي بأدلا مطلق، يمكن الإعتماد عليها في تجميع وتوجيه البيانات والاحتفاظ بها بطريقة منسقة، بلامعها إلى اختيار طرق التعريف والحواف والعناصر والتحليل المناسب لكل نوع من البيانات، وكذلك تحديد النماذج الرياضية والإحصائية المتاحة لتمثيل مثل هذه البيانات ووسائل وسائل اختيار الأسباب من بينها.

وتشتوفد النماذج الرياضية والإحصائية المستخدمة لتمثيل البيانات، تبعًا لاختلاف طبيعة المتغير وقيمة البيانات المجمعة من الخبرة الماضية، فذا كلما قدر متغير هو بطبيعته غير متمل من عدد حوادث الحريق فإنه يجب اختيار Discrete Random Variable من بين نماذج المتغيرات الغير متصلة مثل نموذج القيادة The Poisson Model أو نموذج البوسونوي Distribution Free Model أو نموذج ثنائي القيمة The Negative Binomial model أو نموذج شائع الحديث الباي تيش مثل Random Variable Continuous إذا كان هذا المتغير مستمر بطبيعته قيمتة خسارة الحريق في كل حادث فإنه لايجوز استخدام النماذج السابقة الذكر قبل أن نعب على أن نختار من بين مجموعة أخرى من النماذج، وهي Gamma الختابة بالمتغيرات المتصلة مثل نموذج الانتشار أو نموذج جاما The Log-Normal Model أو النموذج الطبيعي الولوجيريمي Model

وبتحدي نموذج عدد الحوادث ونموذج قيمة الخسارة واستخدام بعض التقنيات الإحصائية يحدد نموذج احتمالي لقيمة أجامع الخسارة، وهذه النماذج الأخبار قد يكون سبيطا يمكن كتابته على صورة صريحة كتوزيع احتمالي لمتغير مستمر على صورة إحدى التوزيعات الإحتمالية.
المعرفة، لا يمكن شكل آخر غير ذلك الاكتشاف المعروف. كما قد يأخذ شكلاً متساقلاً لا يمكن كتابته على مادة مريحة ويحتاج عندئذ إلى أدوات وتقنيات حديثة لاستخدامها في الحسابات (مثل جاسو، وبرامج متخصصة).

و في جميع الأحوال فأنه بالحلول إلى التوزيع الاحتمالي لا يمكن شكل الخسائر تصبح لدينا متكاملة عن ظاهرة خسائر الطريق. وهذا لأن هناك يمكن حساب القيمة المتوقعة لتحديد الفروق الصافية وحساب التباين الملازم لتحديد التحليلات المقابلة للتحركات في قيمة المتوسط ويتوجه عملاً يمكن كتابته أي عبارات احتمالية مطلوبة سواء تلك الخاصة بتحديد تأثير حدود الاحتفاظ المختلفة على الأساطير أو تحديد أقسام إعادة التامين أو الاحتياطيات المناسبة في الحالات المختلفة. و بعبارات أخرى يمكن القول بأنه لاتخاذ أي قرار خاص بخسائر الطريق يجب أن يبنيه هذا القرار على ما يعلمه علينا التوزيع الاحتمالي الخاص بجميع الخسائر حتى يمكن تعليم فرصة نجاح هذا القرار إلى أقصى درجة ممكنة.

الهدف من البحث:

هذا البحث إلى اختيار أنسب النماذج الإحصائية الاحتمالية التي تمثل خسائر الطريق الخاصة بمحطات الوقود الكويتية التابعة لحركة البتروز الوطنية بدولة الكويت أن أفضل تمثيل يمكن حتى يمكن تحديد فرصة نجاح أي قرار خاص بتكاليف الخسائر، و باعتبارها تلك القياسات المتماثلة في كيفية مواجهة وإدارة هذا الخطر، حدد قرار المفيدة بين التامين التجاري والتامين الذاتي أو تحديد حدود الاحتفاظ في حالة التامين التجاري أو تحديد قيمة الاحتياطيات المناسبة في حالة الاحتفاظ بالخطر. كذلك يهدف هذا البحث إلى وضع أسلوب يوضح كيفية اختيار النموذج المناسب لتمثيل البيانات الخامة بالخسائر في الحالات المختلفة.

الأسلوب البحث:

من الواضح أنه لتحقيق أهداف هذا البحث يجب استخدام الأساليب المتعارف عليها في مثل هذه الأحوال وهي:

أولاً: الدراسة النظرية أو المكتبة، وهي التي تكون الاعتماد الأول فيها على المراجع والكتب العلمية والأبحاث والدوريات المشتركة في مجال النماذج الإحصائية الاحتمالية المختلفة التي يمكن.
استخدامها في تطبيق النماذج الاستنادًا إلى البيانات العملية وتحديد مواصفات وخصائص التوزيعات المناسبة للتأمين وخبرة الخسائر بصفة خاصة;

شأننا: الدراسة العملية أو الميدانية: وهي الخاصة بتجميع بيانات خبرة عملية حتى يمكن تطبيق النماذج السابقة الواردة في الدراسة المكتوبة على بيانات خبرة الخسائر المجمعة.

خطة وحدود البحث:

ينقسم هذا البحث إلى فصولين، يختص الأول منها ببحث وتحليل النماذج المختلفة لتقدير عدد حوادث الحريق، في حين يختص الفصل الثاني باختبار ملائمة هذه النماذج لاستخدامها لتقدير عدد حوادث الحريق بمحطات وقود السيارات بدولة الكويت.

ويسمى هذا البحث إلى استخلاص النموذج الإحصائي المناسب لتقدير عدد حوادث الحريق - كمرحلة أولى - تليها مراحل أخرى (في ابحاث ثانوية). وعلى وجه التحديد سيتم اختيار النماذج الإحصائية الآتية:

* نموذج اللاتيوزيع
* نموذج توزيع بوان
* نموذج توزيع شناسي الحديث السابق

وقد تم اختيار هذه النماذج لأنها الأكثر استعمالًا في البحوث الجملي (12) وتوفر برامج الحاسب الآلي الخاصة بها في الوقت الحاضر.

وسوف يتم الاعتماد على بيانات الخبرة العملية المئوية لجميع محطات الوقود العاملة بدولة الكويت في الفترة من 1983 إلى 1989 والتي بلغ عددها 75 محطة عاملة في العام الأخير (1)
الفصل الأول

المصادر المختلفة لتقدير عدد حوادث الحريق

مقدمـه

يمكن النظر إلى عدد حوادث الحريق التي تقع خلال فترة زمنية محددة ، على أنه متغير عشوائي منفصل وذلك نظرًا لتغير عدد الحوادث من عام إلى آخر بطريقة عشوائية ، ونظرًا لأن عدد الحوادث لابد وأن يكون عدد صحيح موجب ولا يأخذ قيم كسرية (عدد الحوادث في إحدى الفترات يمكن أن يكون 0 أو 1 أو 2 أو 3 أو 4 وغيرها ... ولكننا لا يمكن أن يكون 2.3 أو 3.75 مثلًا) لذلك فإنه إذا أردنا تمثيل عدد حوادث الحريق بنموذج احتمالي مناسب فإنه يجب اختيار أحد النماذج الإحتمالية الخاصة بالمتغيرات العشوائية المنفصلة ، ونظرًا لأن أكثر النماذج الإحتمالية للمتغيرات العشوائية المنفصلة استخدمًا في الحياة العملية وفي البحوث العلمية [6] هي:

1) نموذج الانتشار (Poisson Model)
2) النموذج الإحتمالي البوسوني (Negative Binomial Model)
3) نموذج ديني الحديث (Poisson Model)

وبهذا فإنه يصبح لدينا ثلاثة نماذج مرشحة للاختيار نتناول كل منهما في مبحث مستقل ، حيث نتهم بتوضيح خصائص كل منها والظروف المثلى لإستخدامها وطريقة تطبيق ذلك .
البحث الأول
نموذج التوزيع
Distribution Free Model

خصائص نموذج التوزيع

يجد هذا الإلزاب في المعالجة أساسا العلمي في المقالة الإحصائية المعروفة بأن المتوسطات الاحادية المنبوذة من عينات محوسبة من مجتمع معين يكون لها توزيع احتمالي يتراوح من التوزيع الطبيعي بـ NORMAL DISTRIBUTION كما زاد حجم هذه العينات. لذا فإن اصحاب مدرسة نموذج التوزيع [3] يجدون في ذلك المبرر الكافي لعدم البند عن توزيع لعدد الحوادث أولا لأنهم في النهاية يقومون بتقريب التوزيع الاحتمالي لمشتت عدد الحوادث أيا كان شكله الحقيقي إلى التوزيع الطبيعي وقد اثبت الإحصائيون أن هذا التقريب مقبول طالما زاد حجم البيانات في العينة المعروضة منها هذا المتوسط المتحد الذي عدد مفردة، أما إذا اقل حجم هذه العينة عن 30 مفردة فانه يمكن استخدام التوزيع الاحتمالي النمسي بتوزيع "الطابق T" بدلا من التوزيع الطبيعي. وبذلك فانهم يكتفون Distribution T

وذلك لتقدير معايير التوزيع المجهول للمجتمع (بمث) وبعد ذلك يقومون بتقدير قطع التأمين العالي أو قطع الخطر بدالة المعالمة المقدرة "متوسط مجتمع" متوسطات عدد الحوادث كما يقومون باستخدام المعالمة المقدرة الخاصة بالكتابة "الانحراف المعياري لمجتمع"
المستويات " في تقدير التحسينات اللازمة لمقابلة التغيير في عدد الحوادث من فترة لآخر، أما إذا طلب من اضحاك هذه المدرسة كتابة أي عبارة احتمالية خاصة بعدد الحوادث المتوقع خلال فترة معينة خاصة عند التعرض لحساب حدود الاحتمال حساب الأقسام اعادة التأمين وفقا للشروط المختلفة فإنه كثيرا ما تستخدم نظرية الميل إلى التوزيعات الطبيعية للنسبة الموزعة في تقريب توزيع متوسط عدد الحوادث حيث أن النظرية المذكورة تتفق بأن المتغير العشوائي (س - μ) + (μ + 1/√n) حيث n هو حجم العينة التي حسب منها المتوسط الحسابي س، والانحراف المعياري μ، هذا المتغير العشوائي يقترب توزيعه الاحتمالي من التوزيع الطبيعي النمطي والذي يكون متوسطه μ وانحراف المعياري واحد صحيح 0، أي أن:

\[
\frac{س - μ}{\sqrt{\frac{μ}{n}}} (μ + 1)
\]

وهذا يمكننا من القول بأن:

\[
\frac{س - μ}{\sqrt{\frac{μ}{n}}} (μ + 1) = (1 - α)
\]

حيث ح = احتمال، وهذا يعادل القول بأن:

\[
\frac{س - μ}{\sqrt{\frac{μ}{n}}} (μ + 1) = (1 - α)
\]

وبدلاً فانه يمكن استخدام جداول التوزيع الطبيعي النمطي لإيجاد قيمة α إذا ألمعث X (كما هو الحال عند تحديد حد الاحتمال بحيث لا يزيد عدد الحوادث عن حساب احتمال ان يزيد عدد الحوادث عن رقم معين لتحديد أقساط إعادة التأمين المناسبة لذلك).
استخدام نموذج التوزيع لتقدير عدد الحوادث

يمكن استخدام النموذج السابق لتقدير عدد حوادث الحريق في محطات الوقود بدولة الكويت كما يلي:

متوسط عدد الحوادث من عينة جملياً = 356 هو = 0،117977500
والانحراف المعياري لعدد الحوادث من هذه العينة هو ع = 0،40782813

ولذا يمكن القول بأن متوسط عدد الحوادث المحبوه من العينات المشابهة المختلفة هو متغير عشوائي، وأن

س - 0،117977500
1
1 + 0،40782813

أي أن:

س متوسط ط (مفر، 1)

والتقدير الحد الأقصى لистحي عدد الحوادث في 99% من العينات فإنه يمكن اتخاذ ذلك باستخدام جداول التوزيع الطبيعي النمطي كما يلي:

بما أن ح { س - 3،011797750 } + 0،95 = 0،95

حيث يتضح أن = 0،95 من الجداول المشارك إليها وإذا يكون متوسط عدد الحوادث

س > 0،117977500

أي أن:

س > 0،117977500 في 99% من المرات

وبالمثل فإن ح { س - 3،011797750 } + 0،99 = 0،99

حيث يتضح أن = 0،99 من الجداول المشارك إليها وإذا يكون متوسط عدد الحوادث

س > 0،117977500

أي أن:

س > 0،117977500 في 99% من المرات

و

و يمكن الاستفادة من هذه النتائج عند تحديد حد الاحتفاظ مع

الأخذ في الاعتبار المقدرة المالية لصاحب الشأن.
أما إذا أردنا تحديد احتمال زيادة متوسط عدد الحوادث عن حد معين (أو نسبة الحوادث الكبيرة عن نسبة معينة) فإنه يمكن تحديد ذلك كما يلي:

\[
\text{ح} [\text{س} > 0.13] = \text{ح} [\text{س} - 0.32, 0.6164, 0.53] < 0.0017775 < 0.001766 \times 0.0216, 0.0201 = 0.039
\]

وبدلاً يمكن الاسترخاد بهذه النتيجة التي تقول بأن متوسط عدد الحوادث سيزيد عن 0.13 في المائة من المرات في تحديد الإحتماليات اللازمة لمواجهة العدد الكبير من الحوادث في 29 في المائة من الفترات وكذلك يمكن استخدام ذلك في تحديد بعض أنواع اقتصادات إعادة التأمين.

ومن أهم النتائج التي يمكن استخلاصها من التحليل السابق أيضًا أنه يمكن عمل جدول توزيع تكراري متوقع باستخدام هذا التوزيع الطبيعي واستخدام هذا الجدول في حساب احتمالات المتغيرات الغير متعلقة، مع الأخذ في الاعتبار معامل التصحيح المعروف (توزيع مدى المتغير 0.5 من كل من الجانبين للاحتمال المطلوب) كما يلي:

ويمكن استخدام دالة كثافة التوزيع الاحتمالي لانشاء جدول التوزيع الاحتمالي لعدد حوادث الحريق كما يلي:

<table>
<thead>
<tr>
<th>عدد الحوادث [ح]</th>
<th>الاستحالة</th>
<th>التكرار المتوقع [كم]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.867000</td>
<td>270,809</td>
</tr>
<tr>
<td>1</td>
<td>0.174099</td>
<td>91,979</td>
</tr>
<tr>
<td>2</td>
<td>0.000351</td>
<td>0.130</td>
</tr>
<tr>
<td>3</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>23,684</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>258,800</td>
</tr>
</tbody>
</table>
المبحث الثاني

نموذج التوزيع البواسوني

Poisson Distribution Model

خصائص نموذج التوزيع البواسوني

من الواضح أنه يمكن اعتبار البديعات الآتية من الخصائص
الواصة للمتغير الخاص بعدد حوادث الحريق [12]:

AXIOM: "1" بديهية

بفرض أن ن(ت) ترمز إلى عدد حوادث الحريق في الفترة
الزمنية من (الزمن مفر إلى الزمن ت) أي من سفر إلى تريد فانه من
الاحتمالات IMMUNE PROCESS الممكن توصيف أن الإجراءات الاجتماعية
التي تحقق مع المتغير N(ت) مستمدة بالزيادات المستقلة ثابتة
، كما يلي:

إذا كانت شرجة موجبة فإنه لا يتأثر T > t1 > t2 >... > tk
(+) نقطة على خط الزمن فان المتغيرين العشوائيين

\[T(0), T(1), ... , T(r), T(r+1), ... , T(k) \]

\[N(T(r+1)) - N(T(r)), N(T(r+1) + s) - N(T(r) + s) \]

\[R = 1, 2, 3, ..., K \] مستقلين ولهم توزيع
INDEPENDENT AND IDENTICALLY DISTRIBUTED [IID]

بديهية "2" AXIOM

لموفر زمنية شرجة متغير يوجد احتمال موجب لوقوع حادث حريق
ولكن هذا الاحتمال لا ينادي إلى درجة التأكد إيا إن

\[\gamma \leq \frac{1}{N(0)} \]

\[\gamma \geq 1 \]

بديهية "3" AXIOM

في فترة زمنية صغيرة بالكفاية من الوقت (أي أنه يمكن
اختيارها صغيرة بحيث تحقق الظروف التالية) لايمكن أن يحدث فيها أكثر
من حادث حريق واحد إيا إن

\[\gamma \geq 1 \]

فأنا افترضنا أنه من الخبرة الماضية يمكن حساب متوسط حدوث الحروق في هذه الفترة الزمنية المقار إليها سابقاً وننصح لهذا المتوسط بالرقم "م" فانه يمكن استخدام ما يسمى بنموذج المواليد توزيع الاحتمال لعدد الحروق Pure Birth Model البحث في الفترة الزمنية كما يلي:

بما أن الحروق تحدث بمعدل (متوسط) "م" في الفترة الزمنية الواحدة وبفرض أنه لا يوجد حوادث حريق مشتركة فعلا عند بداية الزمن "ت" = 0 ".

فان البدهيات السابقة تقتضي أن احتمال حدوث حريق واحد خلال فترة زمنية مقدارها "ش" (مقدار زيادة بسيطة في التوت) = مشر + د(ش) حيث (ش) يعبر عن حد مثيرا القيمة جدا بالمقارنة مع مشر فيما يقتضي أن يؤدي د(ش) إلى العفر إذا كان "ش" إلى العفر ح.[صر(ت)] = [صر(ش)] ح.[صر(ش)] وذلك باستخدام البدهية رقم (1) حيث ح.[صر(ش)] = مشر وذلك باستخدام البدهية رقم (2)

ويصلنا هذا إلى الحل العام:

$
\text{ت}=\frac{1}{m} + \frac{m}{m+1} + \frac{m^2}{m+1} + \frac{m^3}{m+1} + \cdots
$

وباستخدام البدهية رقم (3)

$\text{ح.[صر(ش)] = 1 - ح.[صر(ش)]}
$

مشر + د(ش)

من بدئية رقم (2) معروف أن احتمال وقوع أكثر من حادث حريق واحد خلال الفترة الواحدة يقترب من العفر إذا افترضت ش من العفر وهذا يعني أن احتمال عدم وقوع حريق خلال الفترة الزمنية ش يساوي القيمة (1 - مشر ش) التي يمكن استخدام بدئية رقم (2)

القول بأنها 1 > 1 - مشر ش > العفر
والآن فلننظر إلى الاحتمالات [ن(ت)]، [ن(ت+ش)] والذين تفيد بوجود حريق في الوقت ت، تمشي على الترتيب. الشكل رقم (1) يبين جميع التغييرات أو الحركات الممكنة لعدد الحرائق المشتتة فعلا بين التوقيتين ت، ت+ش.

الشكل رقم (1)

إذا كانت ن مدير حريق مشتته في التوقيت ت+ش إذا:
(1) كان هناك حريق مشتته في التوقيت ت ولم تتشتت أي حريق أضافية خلال الفترة T أو
(2) كان هناك N-1 حريق مشتته في التوقيت T ونشتته واحدة جديدة في خلال الفترة T.
إذا كانت $n=M$، فمعنى أنه لا يوجد أي حريق مشتعل في الوقت t، فإن ذلك يعني أنه لم يكن هناك أي حريق مشتعل في التوقيت t.

بما أنه وفقاً للبديهيّة (1) تكون كل الاحتمالات مستقلة ولها نفس التوزيع الاحتمالي F_{p}^{n}.

$$G_{n}(t+\Delta t) = G_{n}(t) + m_{n}(t) \Delta t$$

وبإعادة ترتيب هذه الحدود نصل إلى

$$[G_{n}(t+\Delta t) - G_{n}(t)] = m_{n}(t) \Delta t$$

باخذ نهاية هذا التعبير عندما تكون Δt الصفر نجد أن

$$[G^{'}_{n}(t)] = -m_{n}(t) + m_{n-1}(t)$$

حيث $m_{n}(t)$ المعامل التفاضلي الأول للدالة $G_{n}(t)$ بالنسبة للزمن t.

بجل هذه المعادلات نصل إلى

$$G_{n}(t) = \sum_{m=n}^{\infty} \frac{e^{-n}n^{m}}{m!} M_{m}(t) \quad n = 1, 2, 3, \ldots$$

Poisson Distribution Function وهي دالة التوزيع البواسوني بمتغير M، وهذا يعني أنه إذا توفر الشروط الثلاثة الخاصة بالبديهيّات الثلاثة في مواصفات المتغير الخاص بعدد الحوادث فإنه يمكن القول بأن عدد الحوادث موزع وفقاً للتوزيع البواسوني.
المعادلات التفاضلية السابقة يمكن حلها مباشرة بالاستنتاج الرياضي، وفيما يلي نستخدم تحويلات إحصائية تسمى Z-Transformation.

transformation Z

\[Z = -\mu + \sigma \cdot \frac{1}{\sqrt{n}} \cdot \text{أو} \cdot \frac{1}{\sqrt{n-1}} \]

وبالإضافة المعادلة الثانية لذلك ينتج أن

\[\frac{Z}{n} = \mu \pm \frac{1}{\sqrt{n-1}} \]

وبفرض أن ط (زيت) = A و (زيت) + م ز (زيت)

\[= \sigma \cdot \frac{1}{\sqrt{n}} \cdot \text{أو} \cdot \frac{1}{\sqrt{n-1}} \]

\[= -\mu + \sigma \cdot \frac{1}{\sqrt{n}} \cdot \text{أو} \cdot \frac{1}{\sqrt{n-1}} \]

\[= \mu \pm \frac{1}{\sqrt{n-1}} \]

المعادلة التفاضلية تحلل Differential Equation وبحل هذه المعادلة التفاضلية إلى أن

\[m \cdot (z_{t+1}) = b \cdot Z(t) \]

حيث b = ثابت.

وبما أن

\[Z = [0, \text{صفر}] = 1 \]

\[b = 1 \]

اذن
وهذا يؤدي إلى

\[M(z_1) = \frac{1}{H(z, t)} \]

وباستخدام معكوس تحويلات "\(\mathcal{Z}\)" فان

\[z_1 \mathcal{Z}(z_1) = \frac{1}{H(z_1, t)} = \frac{1}{z_1} \times \frac{1}{H(z_1)} \]

وهذا يعطي

\[H[n(t)] = \frac{1}{n} \times \frac{1}{(m,t)} \]

واي بواسون بمتوسط شباين = م ت

استخدام النموذج البواسوني لتقدير عدد الحوادث

يمكن استخدام نموذج التوزيع الاحتمالي البواسوني لتقدير عدد حوادث الحريق في محطات الوقود بدولة الكويت كما يلي:

بما أن \(m = 0,11797770\) فإنه يمكن القول بأن عدد حوادث الحريق هو متغير عشوائي ذو دالة كثافة احتمال هي:

\[\begin{align*}
\text{م} & = 0,11797770 \\
\text{ن} & = 0,11797770 \\
\text{اذن} & = 0,11797770 \\
\text{ن} & = 0,11797770 \\
\end{align*} \]

س.
و يمكن استخدام دالة كثافة التوزيع الاحتمالي في تقدير الأقمار الصافية (المتوسط=3،117،767)، والتحصيلات [نسبة من الإحراز المعياري = جذب(3،117،767،839،0.0) = 0.0، 0.0، 0.0]. كما يمكن استخدامها لتقدير حدود الاحتفاظ المناسبة على فو العلاقة:

\[r = 0.117677503 \times \text{محاسبة} \]

\[r = 1 - 0.117677503 \times \text{محاسبة} \]

و يمكن استخدام دالة كثافة التوزيع الاحتمالي لإنشاء جدول التوزيع التكراري المتوقع كما يلي:

التوزيع الاحتمالي لعدد حوادث الحريق

<table>
<thead>
<tr>
<th>التكرار المتوقع (كم)</th>
<th>الاحتمال (ن)</th>
<th>عدد الحوادث</th>
</tr>
</thead>
<tbody>
<tr>
<td>216,138</td>
<td>0,7887416</td>
<td>0</td>
</tr>
<tr>
<td>37,236</td>
<td>0,104849</td>
<td>1</td>
</tr>
<tr>
<td>9,207</td>
<td>0,03185</td>
<td>2</td>
</tr>
<tr>
<td>0,087</td>
<td>0,00324</td>
<td>3</td>
</tr>
<tr>
<td>0,03</td>
<td>0,0007</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>56,000</td>
<td>1,0000</td>
<td></td>
</tr>
</tbody>
</table>
البحث الثالث
نموذج توزيع شتائي الحديد المลบ
Negative Binominal Distribution Model

خصائص نموذج شتائي الحديد الملب

يناسب النموذج البواسوني الحالات التي تتوافر فيها البديهيات الثلاث المثار إليها سابقاً، فإذا كانت معلمة التوزيع غير معلومة فإنه لا يكون هناك مفرداً من استخدام التحليل البيزي في هذه الحالة، و منفاذ هذا التحليل أن معلمة التوزيع تكون موزعة وفقاً لتوزيع جاما [4].

و يمكن اشتقاقات أن التوزيع المناسب في هذه الحالة هو توزيع شتائي الحديد الملب (نموذج بواسوني - جاما) و معالم هذا التوزيع هي [4]:

\\begin{align*}
\text{المتوسط} \mu &= \frac{\alpha}{\beta} \\
\text{الإحراز} \theta &= \frac{\alpha}{\beta^2} \\
\text{الإحراز المعياري} &= \sqrt{\frac{\alpha}{\beta^2}} \\
\text{التبانين} &= \frac{\alpha}{\beta} \\
\text{المتوسط} &= \frac{\alpha}{\beta} \\
\text{الإحراز} &= \frac{\alpha}{\beta^2} \\
\text{الإحراز المعياري} &= \frac{\alpha}{\beta^2} \\
\text{التبانين} &= \frac{\alpha}{\beta} \\
\end{align*}

استخدام نموذج شتائي الحديد الملب لتقدير عدد الحوادث

يمكن تطبيق نموذج شتائي الحديد الملب على البيانات المجمعة عن عدد حوادث الحريق في محطات الوقود الكويتية كما يلي:

المتوسط = 11767705،
الإحراز المعياري = 174868132،
التبانين = 162337585.
و بتطبيق الصيغ المذكورة بحساب المتوسط و الانحراف المعياري من معالم توزيع تناشى الحديد السالب، و سترمز لهما ب (أ، ب، ر) على الترتيب.

فانه يمكن تقدير هاتين المعلمتين كما يلي:

\[
\text{ا} = 11767703, \quad \text{ب} = 162223785
\]

و التباين ع = 3

وبحل هاتين المعادتين معا ينتج أن:

\[
\begin{align*}
\text{أ} &= 0,790670548 \\
\text{ب} &= 0,287869 \\
\text{ر} &= 0,287869
\end{align*}
\]

وقد يكون القول بأن عدد حوادث الحريق هو متغير عشوائي غير متجيل بتوزيع احتمالي له دالة كثافة احتماليه على الصورة:

\[
J(\frac{2}{287869}, n) = \frac{J(n + 1)}{J(287869) \times \gamma(n + 1, 287869)}
\]

حيث

\[
\gamma(a, b) = \int_0^\infty x^{a-1} e^{-bx} dx
\]

\[
\text{incomplete Gamma Function}
\]

و باستخدام هذه الصورة يمكن عمل جدول التوزيع التكراري المتوقع لعدد حوادث الحريق كما يلي:

- جدالة جاما الغير كاملة
التوزيع الاحتمالي لعدد حوادث الحريق

<table>
<thead>
<tr>
<th>التكرار</th>
<th>الاحتمال ح [ن]</th>
<th>ن</th>
</tr>
</thead>
<tbody>
<tr>
<td>322,480</td>
<td>0.905856</td>
<td>0</td>
</tr>
<tr>
<td>37,003</td>
<td>0.070380</td>
<td>1</td>
</tr>
<tr>
<td>5,000</td>
<td>0.014198</td>
<td>2</td>
</tr>
<tr>
<td>1,131</td>
<td>0.003147</td>
<td>3</td>
</tr>
<tr>
<td>0,336</td>
<td>0.000946</td>
<td>4</td>
</tr>
<tr>
<td>0,062,000</td>
<td>1,000000</td>
<td>5</td>
</tr>
</tbody>
</table>
الفصل الثاني

اختبار ملاءمة النماذج المستخدمة

مقدمته

لاختبار النموذج الامثل في هذه الدراسة سوف نستخدم الاختبار المعروف "K2"، ويقوم هذا الاختبار على ايجاد مجموع خارج قيمة مربعات الفروق بين القراءات الفعلية والمتوقعة ونسبة إلى مجموع مربعات القراءات المتوقعة، ونظرًا لما هو ثابت من أنه لا يمكن استخدام هذا الاختبار إلا إذا كان التكرار المتوقع في كل فئة لا يقل عن 5 [5]، فإننا سوف نقوم بضم الفئات الثلاثة الأخيرة وذلک كما يلي:

<table>
<thead>
<tr>
<th>التكرار الفعلي</th>
<th>الفئة</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>المجموع</td>
<td>356</td>
</tr>
</tbody>
</table>

وإلى جانب الاختبار السابق فإنه من المفيد النظر إلى الرسم البياني للمقارنة بين الشكل الذي تأخذه الأرقام الفعلية مع الشكل الذي تأخذها الأرقام المتوقعة في كل حالة وفيما يلي نماذج تطبيق هذه الاختبارات بالنسبة للنماذج الثلاث المقدمة.
أستخدم البيانات المتاحة لمقارنة التوزيع التكاري الفعلي بالوزيع التكاري المتوقع السابق إيجاده، ويوضح الجدول التالينتائج هذه المقارنة:

جدول مقارنة التوزيع الفعلي والمتوقع
وفقاً لنموذج التوزيع

<table>
<thead>
<tr>
<th>الفئة</th>
<th>التكرار المتوقع كا</th>
<th>التكرار الفعلي</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10,000</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>20,880</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>31,320</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>44,263</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>356,000</td>
<td></td>
</tr>
</tbody>
</table>

كما يوضح الشكل رقم (1) التمثيل البياني لهذه القيم.
الوزن الموزع الفعلي والوزن الموزع الطبيعي

الوزن الموزع الفعلي

الوزن الموزع الطبيعي
3- اختبار ملائمة النموذج البواسوني لتقدير عدد الحوادث

من البيانات الفعليه تبين ما يلي:

التباين المتوقع: 1179745048
التباين وبالنسبة لـ: 160858300
الانحراف المعياري بالنسبة لـ: 407641937
التباين بالنسبة لـ: 1162827850
الانحراف المعياري بالنسبة لـ: 407884132

وقد استخدمت هذه البيانات لمقارنة التوزيع التكراري الفعلي بالتوزيع التكراري المتوقع السابق ايجاده، ويوضح الجدول التالي نتائج هذه المقارنة:

جدول مقارنة التوزيع الفعلي والمتوقع
وفقاً لنموذج التوزيع البواسوني

<table>
<thead>
<tr>
<th>النسبة النسبيه</th>
<th>التكرار الفعلي</th>
<th>التكرار المتوقع</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

كما يوضح الشكل رقم (3) التمثيل البياني لهذه القيم.
شكل رقم (2)
التوزيع الفعلي والتوزيع الالتوسوني
3 - اختبار ملاءمة نموذج توزيع ثنائي الحدين السالب لتقدير عدد الحوادث

استخدمت البيانات المتاحة لمقارنة التوزيع التكراري الفعلي بالتوزيع التكراري المتوقع السابق ايجاده، ويفضح الجدول التالي نتائج هذه المقارنة:

جدول مقارنة التوزيع الفعلي والمتوقع
وفقاً لنموذج توزيع ثنائي الحدين السالب

<table>
<thead>
<tr>
<th>الفئة التكرار المتوقع كا/</th>
<th>التكرار الفعلي</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0008</td>
<td>342,885</td>
</tr>
<tr>
<td>0.373</td>
<td>37,003</td>
</tr>
<tr>
<td>0.666</td>
<td>6,142</td>
</tr>
<tr>
<td>0.847</td>
<td>356,500</td>
</tr>
</tbody>
</table>

كما يوضح الشكل رقم (32) التمثيل البياني لهذه القيم.
شكل رقم (2)
tوزيع الفعلي ووزيع شتائي الحدود السالب
النتائج والتوصيات

نود أن ننذب في البداية إلى أنه لا يمكن الجزم بسلامة أو عدم سلامة تطبيق نموذج معين بمفرده مطلق، وناما يتطلب اختيار هذا النموذج في ظل الظروف والملاحظات الخاصة بالحال سهولة موضع البحث، ومثالي في مقدمة العوامل التي تدفع إلى اختيار نموذج معين دون غيره طبيعة المتغير المتواجد.

وبمقارنة النماذج الثلاثة المقدمة بتطبيق اختبار كا ٢ وبالنظر إلى الاشكال البيانية السابقة وجد أن نموذج توزيع تشاري الحديق المالب يبدو أكثر هذه التوزيعات ملائمة للبيانات المتاحة، حيث أن قيمة كا ٢ تكون أقل ما يمكن من ناحية وغير معنوية من الناحية الأخرى وهو الاسم.

وبناء على هذه النتيجة نوصي باستخدام نموذج التوزيع تشاري الحديق المالب لتقدير عدد حوادث الحريق بمحطات وقود السيارات بدولة الكويت، كما نوصي بمواد البحث لتحديد النموذج الإحصائي لتقدير قيمة الخسارة، وباستخدام هذا النموذج الأخير بإمكانه إلى النموذج المقترح لمصدر تقييم عدد الحوادث يمكن تقدير اجمالي الخسارة.
مراجع البحث

اولاً: المراجع العربية:

(1) حربي، جلال عبد الخليل، "انخاذ قرار التأمين التجاري أو الذاتي في مناطق الوقود الكويتية"، مجلة الإدارة والمحاسبة والتأمین، كلية التجارة، جامعة القاهرة، العدد 31، سنة 1991.

ثانياً: المراجع الأجنبية:

