مقارنة بين معدل العائد المحلي ومعدل العائد الحقيقي في نظام التقسيط في المملكة العربية السعودية

د. إبراهيم بن عبد الله الجاسر
أستاذ مساعد قسم الأساليب الكمية
كلية العلوم الإدارية - جامعة الملك سعود

ملخص

تعتبر ظاهرة التقسيط من الظواهر الحديثة نسبياً في المملكة العربية السعودية. ولنمذجتها اثبتت الأدوار والمنشآت، قامت العديد من الشركات والمؤسسات التجارية بتقسيم قيم السلع المختلفة. وقد أثبتت شركات التقسيط نظام تقسيط يتم بموجبه حساب قيمة الأسلاك باستخدام معدلات عداد متعلقة تحدها شركة التقسيط والتي تختلف عن شركة أخرى. في هذا البحث سوف نجد معدل العائد الحقيقي الذي تحقق شركات التقسيط والذي يختلف كثيرا عن معدل العائد المحلي بواسطة هذه الشركات. وأيضا سوف نتعرف على العوامل المؤثرة على معدل العائد الحقيقي.

المهم والجدير هو أن الأدوات المتعددة من قبل شركات التقسيط يعطي الشركة المقررة معدل عادل أعلى بكثير مما هو معلن عن في حين أن الأدوات المدفوعة بحساب即是 إلى إشعاع قيمتهم المالية من قبل إمكانية شرائهولة واسطة نظام التقسيط الذي يصح لهم باستخدام ذلك العدل مكافأة الالتزام بدفع أسهم في استمرار الحياة الادارية ومنتظمة. وعندما ما نجحؤة على شراء ما يتعلق بالتقسيط من شركات تلك السلاسل أو تستطيع شراء السلع بالتناوب أنهم ومن ثم تقسيط قيمة الإجمالية للسلعة على دقات شهرية. وتستعمل قيمة الإجمالية للسلعة كل من السلاسل النقدية للسلعة وعندما تم حسابها بطريقة متناوئة لدى شركة التقسيط وتمتع شركات التقسيط بطرق لحساب الأسلاك تختلف كثيرا عن الأسلاك العلمي لحساب الأسلاك. والاختلاف

منهج البحث

سوف نتطرق في الجزء التالي إلى أيضاح الطريقة العلمية لحساب الأسلاك والطريقة المتعددة من شركات التقسيط لحساب الأسلاك الشهورية. ومن ثم نستعمل الطريقة العلمية والطريقة المتعددة لتقسيم شركة العائد الحقيقي ومعدل العائد من قبل شركة التقسيط. وأخيرا نتعرض إلى

أهمية الدراسة

تكتسب أهمية الدراسة في توضيح وواقع التقسيط في المملكة وكيف أن الكثير من الأفراد والمنشآت يدفعون الكثير لشركات التقسيط مقابل الاستفادة من هذه الخدمة المالية. أن هذه الدراسة سوف تعطي المستهاك مرجعًا أساسيا لمقارنة المعدلات المالية من قبل شركات التقسيط بالمعدلات الحقيقية التي يدفعها الأفراد.
CF = \frac{\frac{P \cdot r}{1 - (1 + r)^{-N}}}{\frac{\frac{p \cdot r}{1 - (1 + r)^{-N}}}{1 - (1 + r)^{-N}}}

حيث:
- CF هو القسط الشهري.
- p معدل الائتمان الشهري.
- N عدد السنوات.
- r معدل الفائدة السنوي.

ولكن باستخدام هذا القانون، لا يمكن إيجاد صيغة مطلقة لحساب معدل العائد. لذلك تم إيجاد معادلة من الدرجة الثانية يمكننا حلها لإيجاد قيم تقريبية لحساب العائد. وهذه المعادلة هي على النحو التالي: (إنظر ملحق البحث)

الأسلوب العلمي لحساب الأقساط

الأسلوب العلمي هو الأسلوب المتبقي في جميع الكتب المتخصصة في رياضيات المال والاستثمار لحساب قوقائين الفائدة السالبة وتقسيم الفائدة المربعة. وتضمن هذه الفقرات أن تكون قيمة معدل الفائدة تقسيمه ساوية تماما لمجموع قيمة المبلغ الأقساط. وسنعرض فيما يلي قانون حساب القسط الشهري باستخدام قوقائين الفائدة المركبة:

\[\left(\frac{P \cdot C_F^k - C_F}{C_F} \right)^2 + \left(\frac{P \cdot r - C_F}{C_F} \right) = 0 \]

ويجب التوقيع هنا إلى أننا سنحصل على قيمةين أحادية موجبة أو سالبة. لذا لدينا البديع القيمة السالبة ونستخدم القيمة الموجبة. ويمكن حساب معدل العائد الحقيقي ودقة باستخدام برمج على الحاسب الآلي مثل EXCEL والذي يستخدم أساليب علمية للمحاكاة عن معدل العائد الصحيحة.

نظام التقسيط المتبع في شركات التقسيط

المملكة

قام الباحث بمسح شامل لشركات التقسيط في مدينة ترباسة وكان التركيز على شركات تقسيط الديون وأخرى تقسيط السيارات. وقد تبين أن هناك أسلاوب واحدة متبع في عملية التقسيط ووهو أن تقوم شركة التقسيط عادة بطلب مبلغ مقدم بجزء من قيمة السطوع. ومن ثم تقديم الباقي على أقساط شهرية وتتراوح مدة التقسيم بين ستين إلى أربع سنوات للسيارات ومدة تتراوح بين 4 سنوات و8 سنوات للدراجات. ويتم حساب القسط على النحو التالي:

\[CF = \frac{P \cdot (1 + r \cdot N)}{12 \cdot N} \]

حيث:
- \(CF \) هو القسط الشهري.
- \(P \) المبلغ المتبقي للتقسيط.
التقسيط، يتوجب علينا استخدام القسط الشهري الناتج من الأسلوب المتحف لدى شركات التقسيط في حساب معدل العائد في الأسلوب العلمي. وستستخدم ل والاستفادة من هذه النقطة المثال التالي:

لنفترض أن لدينا شخصاً يريد شراء سيارة بцен تقترب من الفئة 1200 ريال. وقد أوفرت شركة التقسيط أنها ستقوم بحساب معدل عائد مداره 10% سنوياً.

وبناءً على قاعدة شركات التقسيط فإن القسط الشهري يكون:

\[CF = \frac{120000 \times 0.68}{4} = 3300 \]

ولو استخدمنا القسط الشهري في حساب معدل العائد باستخدام قوانين القائدة المركبة يكون معدل العائد السنوي هو الناتج من حساب المعدلة التالية:

\[(11.6363) \times 10^{-5} + \frac{11.6363}{12} = 0.012674 \]

ويكون معدل العائد السنوي الحقيقي هو:

\[R = 1 - 10^{-16.315\%} \]

وباستخدام برنامج Excel لحساب معدل الشهري الحقيقي هو 30.361% والاختلاف بين معدل العائد الحقيقي باستخدام برنامج Excel والحل الناتج من حساب المعدلة السابقة.

هو التقريب الذي تم استخدامه لإيجاد الصيغة السابقة لمعدلة الدرجة الثانية. أما برنامج Excel فيعطي نتائج دقيقة لأن البرنامج يقوم بعملية بحث عن العدد الذي يجعل القيمة الحالية للأسافط مساوية لقيمة مبلغ التقسيط.

العوامل المؤثرة في حساب معدل العائد الحقيقي

في هذا الجزء سوف نتعرف على العوامل المؤثرة على حساب معدل العائد الحقيقي ولهذه العوامل هي:

1. معدل العائد المعنوي من قبل الشركة.
2. مدة التقسيط.

في الجدول رقم 1 يمثل الصف الأول المعادلة المعدلة من شركات التقسيط ويتطلب من معدل 15% إلى معدل 16% من معدل الأرباح. ويتمثل فترات التقسيط المختلفة التي تبدأ من 12 شهر إلى 120 شهر. وتتمثل الخلايا الناتجة من تقاطع كل صف ومعدل معدلات العائد الحقيقي باستخدام قوانين القائدة المركبة، وللحصول على نتائج Excel دقيقة تم استخدام برنامج Excel لحساب هذه النتائج. وما تذكر الإشارة التي هنا أن مبلغ التقسيط لا يؤثر على قيمة المعادلات المحاسبية، إلا أن مبلغ التقسيط يؤثر فقط على قيمة القسط الشهري.
المعادلات الحقيقية باستخدام قانون الفائدة المركبة والتي تقابل بعض المعادلات المعلنة ومدة التقسيط بالشهور

<table>
<thead>
<tr>
<th></th>
<th>15%</th>
<th>14%</th>
<th>13%</th>
<th>12%</th>
<th>11%</th>
<th>10%</th>
<th>9%</th>
<th>8%</th>
<th>7%</th>
<th>6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.12%</td>
<td>27.96%</td>
<td>25.82%</td>
<td>23.70%</td>
<td>21.60%</td>
<td>19.53%</td>
<td>17.48%</td>
<td>15.45%</td>
<td>13.44%</td>
<td>11.46%</td>
<td>12</td>
</tr>
<tr>
<td>30.29%</td>
<td>28.15%</td>
<td>26.03%</td>
<td>23.92%</td>
<td>21.84%</td>
<td>19.77%</td>
<td>17.71%</td>
<td>15.68%</td>
<td>13.66%</td>
<td>11.66%</td>
<td>18</td>
</tr>
<tr>
<td>30.07%</td>
<td>27.98%</td>
<td>25.90%</td>
<td>23.84%</td>
<td>21.79%</td>
<td>19.75%</td>
<td>17.72%</td>
<td>15.71%</td>
<td>13.70%</td>
<td>11.71%</td>
<td>24</td>
</tr>
<tr>
<td>29.71%</td>
<td>27.68%</td>
<td>25.65%</td>
<td>23.64%</td>
<td>21.63%</td>
<td>19.63%</td>
<td>17.64%</td>
<td>15.65%</td>
<td>13.67%</td>
<td>11.70%</td>
<td>30</td>
</tr>
<tr>
<td>29.30%</td>
<td>27.33%</td>
<td>25.35%</td>
<td>23.39%</td>
<td>21.42%</td>
<td>19.46%</td>
<td>17.51%</td>
<td>15.56%</td>
<td>13.61%</td>
<td>11.66%</td>
<td>36</td>
</tr>
<tr>
<td>28.88%</td>
<td>26.96%</td>
<td>25.04%</td>
<td>23.12%</td>
<td>21.20%</td>
<td>19.28%</td>
<td>17.37%</td>
<td>15.45%</td>
<td>13.53%</td>
<td>11.61%</td>
<td>42</td>
</tr>
<tr>
<td>28.47%</td>
<td>26.60%</td>
<td>24.72%</td>
<td>22.85%</td>
<td>20.97%</td>
<td>19.09%</td>
<td>17.21%</td>
<td>15.33%</td>
<td>13.44%</td>
<td>11.54%</td>
<td>48</td>
</tr>
<tr>
<td>28.07%</td>
<td>26.24%</td>
<td>24.41%</td>
<td>22.58%</td>
<td>20.74%</td>
<td>18.90%</td>
<td>17.05%</td>
<td>15.20%</td>
<td>13.34%</td>
<td>11.48%</td>
<td>54</td>
</tr>
<tr>
<td>27.68%</td>
<td>25.89%</td>
<td>24.10%</td>
<td>22.31%</td>
<td>20.51%</td>
<td>18.71%</td>
<td>16.90%</td>
<td>15.08%</td>
<td>13.25%</td>
<td>11.40%</td>
<td>60</td>
</tr>
<tr>
<td>27.31%</td>
<td>25.56%</td>
<td>23.81%</td>
<td>22.05%</td>
<td>20.29%</td>
<td>18.52%</td>
<td>16.74%</td>
<td>14.95%</td>
<td>13.15%</td>
<td>11.33%</td>
<td>66</td>
</tr>
<tr>
<td>26.95%</td>
<td>25.24%</td>
<td>23.53%</td>
<td>21.81%</td>
<td>20.08%</td>
<td>18.34%</td>
<td>16.59%</td>
<td>14.83%</td>
<td>13.05%</td>
<td>11.26%</td>
<td>72</td>
</tr>
<tr>
<td>26.61%</td>
<td>24.94%</td>
<td>23.26%</td>
<td>21.57%</td>
<td>19.87%</td>
<td>18.16%</td>
<td>16.44%</td>
<td>14.71%</td>
<td>12.96%</td>
<td>11.19%</td>
<td>78</td>
</tr>
<tr>
<td>26.29%</td>
<td>24.65%</td>
<td>23.00%</td>
<td>21.34%</td>
<td>19.67%</td>
<td>17.99%</td>
<td>16.30%</td>
<td>14.59%</td>
<td>12.86%</td>
<td>11.11%</td>
<td>84</td>
</tr>
<tr>
<td>25.98%</td>
<td>24.37%</td>
<td>22.75%</td>
<td>21.12%</td>
<td>19.48%</td>
<td>17.82%</td>
<td>16.16%</td>
<td>14.47%</td>
<td>12.77%</td>
<td>11.04%</td>
<td>90</td>
</tr>
<tr>
<td>25.69%</td>
<td>24.10%</td>
<td>22.51%</td>
<td>21.12%</td>
<td>19.29%</td>
<td>17.66%</td>
<td>16.02%</td>
<td>14.36%</td>
<td>12.68%</td>
<td>10.97%</td>
<td>96</td>
</tr>
<tr>
<td>25.41%</td>
<td>23.85%</td>
<td>22.28%</td>
<td>20.70%</td>
<td>19.11%</td>
<td>17.51%</td>
<td>15.89%</td>
<td>14.25%</td>
<td>12.59%</td>
<td>10.90%</td>
<td>102</td>
</tr>
<tr>
<td>25.15%</td>
<td>23.61%</td>
<td>22.06%</td>
<td>20.51%</td>
<td>18.94%</td>
<td>17.36%</td>
<td>15.76%</td>
<td>14.14%</td>
<td>12.50%</td>
<td>10.84%</td>
<td>108</td>
</tr>
<tr>
<td>24.89%</td>
<td>23.38%</td>
<td>21.85%</td>
<td>20.32%</td>
<td>18.77%</td>
<td>17.21%</td>
<td>15.63%</td>
<td>14.04%</td>
<td>12.42%</td>
<td>10.77%</td>
<td>114</td>
</tr>
<tr>
<td>24.65%</td>
<td>23.16%</td>
<td>21.65%</td>
<td>20.14%</td>
<td>18.61%</td>
<td>17.07%</td>
<td>15.51%</td>
<td>13.93%</td>
<td>12.33%</td>
<td>10.70%</td>
<td>120</td>
</tr>
</tbody>
</table>
يشير رقم 2 أن النموذج الحقيقي أعلى بكثير من النموذج الحالي، مقارنةً بقيمة متوسطة عند 24 شهر. كما نلاحظ أن النموذج الحقيقي يبدأ بالتنبؤ مع زيادة مدة التقطيع إلا أن هذه القيمة وصلت إلى 70% عند مدة التقطيع في 120 شهر. وكان الفارق بين أعلى معدل وأقل معدل هو 100%. وتتبع جميع معدلات النموذج الحقيقي نفس النمط في التغيير إلا أن الفارق بين المعدلات الجديدة والمعدلات الحقيقية الصغرى يزداد مع زيادة معدل المعدل.

وأيضاً نلاحظ سلسلة من الجداول أن النموذج الحقيقي يكون عند أعلى قيمة عندما تكون مدة التقطيع ما بين 18 شهر أو 24 شهر. وقد كانت أعلى قيمة للمعدل الحقيقي هي عند 24 شهر وذلك لجميع المعدلات المختلفة. ونلاحظ أن عندما تكون مدة التقطيع قريبة من 24 شهر أو 48 شهر يصبح معدل النموذج الحقيقي قرباً لخفض معدل المعدل. والسبب كثير بما هو خاص بالأفراد.
المعنوي وبلغ تقريبا ضعف المعدل المعلن.
2. يتأثر معدل العائد الحقيقي فقط بمعدل العائد المعلن وفترة التنصيب.
3. لا يؤثر مبلغ المراجعة تعسيمه على قيمة المعدلات المحسوبة، ويكون تأثير المبلغ فقط على قيمة الفصل الشهري.
4. يكون معدل العائد الحقيقي عند أعلى قيمة له إذا كانت مدة التنصيب هو 24 شهرا أو 18 شهرا.

والمقترضين ومنها ما هو خاص بشركة التقسيط، بلغاً الكثير من الأفراد إلى تقسيط السلع على مدة 36 شهر أو 48 شهر.

النتائج:
نخلص من هذا البحث بالنتائج التالية:
1. عند حساب معدل العائد الحقيقي باستخدام قوانين الفائدة المركبة المقابل لأي معدل معلن من قبل شركات التقسيط، وجد أن هذا المعدل أعلى بكثير من المعدل
المراجع العربية

1. محمد الوطيان، الرياضة المالية، مكتبة الفلاح- الكويت، 1992.
3. عبد الحليم كرارة، الرياضة المالية: الأردن، 1996.

المراجع الأجنبية

William Sharpe, Gordon Alexander, and Jeffrey Bailey; Investments. 1

Lawrence Gitman and Michael Joehnk; Fundamentals of Investing. 2
ملحق البحث

يتطلب حساب معدل العائد باستخدام الفائدة المرتبطة معرفتها بأصل المبلغ وقيمة الفائدة وعدد الأقساط.

ويتضمن هذا المعدل أن تكون جملة أصل المبلغ مثبتة تمامًا لجملة الأقساط عند نهاية عملية التقسيط.

وتوضح الخطوات التالية لتمثيل قانون حساب معدل العائد:

\[
P \times (1+r)^n = \frac{CF \cdot (1+r)^n - 1}{r}
\]

\[
P \times (1+r)^n = \frac{CF \cdot \left[1 + C_1 r + C_2 r^2 + C_3 r^3 + \ldots + C_n r^n\right]}{r}
\]

\[
P \times (1+r)^n = \frac{CF \cdot \left[C_1 r + C_2 r^2 + C_3 r^3 + \ldots + C_n r^n\right]}{r}
\]

\[
P \times (1+r)^n = CF \cdot \left[C_1 r + C_2 r^2 + C_3 r^3 + \ldots + C_n r^n\right]
\]

ويمكن كتابة الطرف الأول على النحو التالي:

\[
P \times (1+r)^n = P \left[1 + C_1 r + C_2 r^2 + \ldots + C_n r^n\right]
\]

و بذلك يكون لدينا المعادلة التالية:

\[
\left(\frac{P \cdot C_1}{CF}\right) r^1 + \left(\frac{P \cdot C_2 - 1}{CF} - C_1 \frac{r^1 - C_2 \frac{r^1 - 1}{r^1}}{1 - r}\right) r^1 - \ldots + \left(\frac{P \cdot C_n - 2}{CF} - C_1 \frac{r^n - 1}{r^n - 1}\right) r^n - 1 = 0
\]

وحل هذه المعادلة، يمكن إيجاد قيمة \(r \) بمعرفة قيمة الفائدة الشهرية وقيمة المبلغ الأساسي للتقسيط، إلا أن هذه المعادلة لا يمكن حلها إلا باستخدام الحاسب الآلي. ولإيجاد قيمة تقريبية لمعدل العائد فإننا نتجاهل جميع الحدود التي تحتوي على \(r \) بناءً على قيمته. وبالتالي يكون لدينا معادلة من الدرجة الثانية يمكن حلها بسهولة. إلا أنه يجب التنبؤ بأن قيمة \(r \) لن تكون مباينة للقيمة الحقيقية وذلك نتيجة لتكريب الذي تم استخدامه لإيجاد الصيغة السابقة، ومع زيادة قيمة \(r \) يزداد الفرق بين القيمة الحقيقية والقيمة الناتجة من حل المعادلة من الدرجة الثانية.