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Abstract 

In order to overcome the negative effects caused by multicollinearity 
between the explanatory variables in the linear regression model, a new 
estimator namely modified almost unbiased ridge estimator is presented 
with its statistical characteristics in this paper. Also, the matrix mean 
squared error and squared bias criteria are adopted as a basis for 
comparisons between the new estimator and the ordinary least squares 
estimator, ridge estimator, and almost unbiased ridge estimator. Further, 
selection of the biasing parameter is discussed. Moreover, to check the 
performance of the new estimator versus the other estimators considered 
in this paper in the sense of scalar mean squared error, a study of Monte 
Carlo simulation and a real data example are conducted. The results 
indicate that in terms of scalar mean squared error, the new estimator, 
modified almost unbiased ridge estimator outperforms the others in use. 
So, it can be safely used when multicollinearity exists in a linear 
regression model. 

Keywords: Multicollinearity, Ridge estimator, Almost unbiased ridge 
estimator, Matrix mean squared error, Monte Carlo simulation.  

1. Introduction 

In linear regression model, the problem of multicollinearity occurs in 
the existence of linear dependencies between the explanatory variables. It 
is well known that ordinary least squares (OLS) estimation is the 
preferred method for estimating the parameters in linear regression model 
since it gives an unbiased estimator with minimum variance [Johnson and 
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Wichern (2007)]. However, when the problem of multicollinearity exists, 
the ordinary least squares estimator (OLSE) will be unstable with high 
variance [Vinod and Ullah (1981)].  

To circumvent the multicollinearity problem in linear regression, 
many popular estimators of biased estimation methods have been 
introduced. These estimators include the Stein estimator by Stein (1956), 
the principal component estimator by Massy (1965), the ridge estimator 
by Hoerl and Kennard (1970), the Liu estimator by Liu (1993), and the 
Liu-type estimator by Liu (2003). Also, two versions of the two-
parameter estimator by Özkale and Kaçiranlar (2007) and Yang and 
Chang (2010), the ridge-type estimator by Kibria and Lukman (2020), the 
modified one-parameter Liu estimator by Lukman et al. (2020), the 
generalized Kibria-Lukman estimator by Dawoud et al. (2022), and the 
new two-parameter estimator by Owolabi et al. (2022) were introduced 
for the linear regression model.  

Another set of suggested estimators for dealing with multicollinearity 
are the almost unbiased estimators. For the linear regression model, the 
almost unbiased ridge estimator (AURE) by Singh et al. (1986), the 
almost unbiased Liu estimator by Alheety and Kibria (2009), the almost 
unbiased ridge-type principal component estimator and the almost 
unbiased Liu-type principal component estimator by Li and Yang (2014), 
the modified almost unbiased Liu estimator by Armairajan and Wijekoon 
(2017), and the almost unbiased Liu principal component estimator by 
Ahmed et al. (2021) were presented. 

In this paper, a new estimator namely modified almost unbiased ridge 
estimator (MAURE) is proposed for overcoming the effects of 
multicollinearity in linear regression. 

This paper is structured as follows. In Section 2, for linear regression 
model, the OLSE, RE, and AURE and their statistical characteristics are 
discussed. In Section 3, the new estimator, MAURE is presented. In 
Section 4, the superiority of the MAURE over the OLSE, RE, AURE 
based on the criteria of matrix mean squared error (MMSE) and squared 
bias (SB) is provided. In Section 5, selection of the biasing parameter is 
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given. In Section 6, a study of Monte Carlo simulation is performed to 
compare the performance of the new estimator, MAURE with other 
considered estimators: OLSE, RE, and AURE in terms of scalar mean 
squared error (SMSE). Also, a real data example is included in Section 7. 
Finally, in Section 8, the conclusion is given. 

2. Statistical Methodology 

The linear regression model has the following standard form: 

                                                 =  + ,                                            (1) 

where  is a × 1 vector of response variable,  is a ×  full rank 
matrix of  observations on   explanatory variables,  is a × 1 vector 
of unknown regression coefficients, and  is a × 1 vector of random 
error with mean vector ( ) = 0 and covariance matrix ( ) = , 

 is an ×  identity matrix. 

By considering the OLS method for estimating the regression 
coefficients, the OLSE of   can be obtained as follows: 

                                              =  ,                                       (2) 

where = . 

The  is an unbiased estimator and its covariance matrix is given 
as 

                                           ( ) = .                                  (3) 

The MMSE of  is as follows: 

                = + ( )           (4) 

                                         = , 

where (. )denotes the bias vector. 

Also, the SMSE of  is given as follows: 
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                                = [ ]                      (5) 

                                                        = ∑  , 

where  are the eigenvalues of V. 

When the model (1) is suffering from multicollinearity because of 
correlated explanatory variables, the OLSE becomes biased and has high 
variance, which leads to unstable parameters estimates. 

For tackling the effect of multicollinearity in linear regression model, 
Hoerl and Kennard (1970) introduced the RE which is defined as follows: 

                                       = ( +  )                                 (6) 

                                              =  , 

where = ( +  )  , and  is the biasing parameter called the 
ridge parameter, > 0. 

The following statistical characteristics belong to the RE: 

                                          =  ,                                             (7) 

                                          B = ( − )                                      (8) 

                                                       = − ( +  )  

                                                       = , (say) 

                                      Cov = ,                                (9) 

                = + ( )                      (10) 

                                      = + ( − ) ( − ) ,                        

and 

                              = [ ]                             (11) 
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                                                   = ∑
( )

+ ∑
( )

 , 

where  is the th element of  and  is an orthogonal matrix 
defined as = , = diag( , , … , ). 

Based on the following definition, the AURE is proposed by Singh et 
al. (1986) in linear regression model. 

Definition 1. Assume that ∗ is a biased estimator of  and ∗ =
∗ − =  is the bias vector of ∗. Then, the almost unbiased 

estimator of  is = ∗ − ∗ = ( − ) ∗. [Kadiyala (1984)] 

The AURE is defined as follows: 

                                               =  ,                                  (12) 

where = − ( +  ) . 

The statistical characteristics of the AURE are given as follows:  

                                            =  ,                                      (13) 

                                      B = ( − )                                     (14) 

                                                       = − ( +  )  

                                                       = , (say) 

                                  Cov = ,                                (15) 

           = + ( )            (16) 

                                     = + ( − ) ( − ) ,                      

and 

                   = [ ]                                (17) 



6 
 

                                            = ∑ ( )

( )
+ ∑

( )
 . 

3. The New Estimator 

In this section, a new almost unbiased estimator, MAURE is 
proposed based on the RE and AURE as follows: 

                                             =                                        (18) 

                                                          =  . 

The new estimator, MAURE has the following characteristics: 

                                          =  ,                                (19) 

                    B = ( − )                                               (20) 

                                       = − [( +  ) + ]( +  )  

                                       = , (say) 

                              Cov = ,                       (21) 

 = + ( )            (22) 

                        = + ( − ) ( − ) ,                        

and 

= [ ]                                              (23) 

                   = ∑ [( ) ]
( )

+ ∑ [[( ) ]
( )

− 1]  . 

4. Superiority of the MAURE 

Based on the MMSE and SB, the following comparisons are 
performed. 
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4.1 MMSE comparisons 

      When the comparison between any two estimators and  of  is 
performed by the criterion of MMSE, the following Lemmas can be used: 

Lemma 1. Suppose that  and are ×  matrices such that > 0, and 
≥ 0. Then, >  if and only if ( ) < 1. [Rao et al. (2008)] 

Lemma 2. For two estimators and  of , suppose that =
− ( ) is positive definite. Then, − ( ) 

is non-negative definite if and only if [ + ] ≤ 1, where  
and  denote the bias vectors of and  respectively. [Trenkler and 
Toutenburg (1990)] 

The following comparisons are performed between the new 
estimator, MAURE and the OLSE, RE, and AURE by the MMSE 
criterion. 

4.1.1 The MMSE comparison between the OLSE and MAURE 

Using (4) and (22), the MMSE difference of the OLSE and MAURE 
is given by 

−  

   = [ − ] − ( − ) ( − )          ( 24) 

   = − ( − ) ( − )  

   = − , 

where  = − . 

Then, according to Lemma 2, Theorem 1 is stated as follows: 

Theorem 1. When ( ) < 1, the MAURE is superior 
to OLSE based on  the MMSE criterion if and only if  [ ] ≤ 1. 

Proof: Since  and  are positive definite matrices, then, 
= − > 0 according to Lemma 1 if and only if 
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( ) < 1. Consequently, from Lemma 2,  
−  is a non-negative definite matrix if 

and only if ( − ) [ ] ( − ) ≤ 1. 

4.1.2 The MMSE comparison between the RE and MAURE 

Using (10) and (22), the MMSE difference of the RE and MAURE is 
as follows: 

−  

           = [ − ] + ( − ) ( − )  

           −( − ) ( − )                                                     (25) 

           = [ − ] + −  

where =  , and = . 

Then, Theorem 2 is stated as follows: 

Theorem 2. When ( ) < 1, the MAURE is superior to RE 
based on the MMSE criterion if and only if  [ ( − ) +

] ≤ 1. 

Proof: Since  and  are positive definite matrices, then, − > 0 
according to Lemma 1 if and only if ( ) < 1. Consequently, 
from Lemma 2, −  is a non-negative 
definite matrix if and only if 

( − ) [ ( − ) + ( − ) ( − ) ] ( − ) ≤ 1. 

4.1.3 The MMSE comparison between the AURE and MAURE 

Using (16) and (22), the MMSE difference of the AURE and 
MAURE is given as follows: 

−  

             = [ − ] + ( − ) ( − )  
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             −( − ) ( − )                                                   (26) 

             = [ − ] + − , 

where =  . 

Then, Theorem 3 is stated as follows: 

Theorem 3. When ( ) < 1, the MAURE is superior to AURE 
based on the MMSE criterion if and only if [ ( − ) +

] ≤ 1. 

Proof: Since  and  are positive definite matrices, then, from Lemma 
1, − > 0 if and only if ( ) < 1. Consequently, by 
Lemma 2, −  is a non-negative definite 
matrix if and only if 

( − ) [ ( − ) + ( − ) ( − ) ] ( − ) ≤ 1. 

4.2 Squared bias comparisons 

Based on the SB criterion, the following comparisons are discussed 
between the MAURE and the RE and AURE. 

4.2.1 The SB comparison between the RE and MAURE 

From (8) and (20), the difference of SB between the RE and MAURE 
is given as follows: 

− = ( + )  

                                      − ( + ) [( + ) + ] .          (27) 

Then, Theorem 4 is given as follows: 

Theorem 4. Under SB criterion, − > 0 for 
> 0. 

Proof: Since = , the difference of SB between the RE and MAURE 
is 
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 − = ( + )  

                                              − ( + ) [( + ) + ]  

                                              = , 

where = [( + ) − ( + ) [( + ) + ] ]. 

Therefore, for > 0, > 0. 

4.2.2 The SB comparison between the AURE and MAURE 

From (14) and (20), the difference of SB between the AURE and 
MAURE is given by 

− = ( + )  

                                      − ( + ) [( + ) + ] .          (28) 

Then, Theorem 5 is stated as follows: 

Theorem 5. Under SB criterion, − > 0 for 
> 0. 

Proof: Since = , the difference of SB between the AURE and 
MAURE is 

 − = ( + )  

                                             − ( + ) [( + ) + ]  

                                             = , 

where = [ ( + ) − ( + ) [( + ) + ] ]. 

Therefore, for > 0, > 0. 
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5. Selection of  Biasing Parameter 

For determining the biasing parameter , many methods have been 
proposed. Some of the more popular of these methods are considered as 
follows: 

Hoerl and Kennard (1970) suggested the following estimator of : 

                                                     =  ,                                       (29) 

where = ∑ ( − ) , and  is the maximum value of . 

Hoerl et al. (1975) suggested an alternative estimator as follows: 

                                                     =   .                                        (30) 

In Khalaf and Shukur (2005), the following estimator was proposed: 

                                          =  
( )

 .                            (31) 

In addition, Alkhamisi et al. (2006) proposed an estimator of  as 
follows: 

                       =  
( )

, = 1,2, … ,                 (32) 

Further, Muniz and Kibria (2009) suggested the following estimator: 

                                  = [∏  
( )

] .                            (33) 

6. Monte Carlo Simulation Study 

A Monte Carlo simulation study is conducted using the R 4. 0. 3 
programme to evaluate the performance of the new estimator, MAURE 
in the linear regression model against the OLSE, RE, and AURE in the 
sense of SMSE. 
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The explanatory variables are generated following McDonald and 
Galarneau (1975) as follows: 

         = [1 − ] ⁄ + , = 1,2, … ,  , = 1,2, … , ,       (34) 

where  represents the correlation degree between any two explanatory 
variables, and ~ (0,1) is the independent pseudo-random variable. 

The response variable is obtained as follows: 

       = + + + ⋯ + + , = 1,2, … , ,         (35) 

where  ~ (0, ), and the coefficient  is chosen so that = 0, 
and ∑ = 1, where = = ⋯ =  following Kibria (2003). 

For = 5 and 9 explanatory variables, different values of =
0.80, 0.90, and 0.99, different sample sizes = 50,100, and 200, and 
different values of error variance = 1,3, and 5 are considered. 

For a combination of the values of , , , and , the generated data 
are repeated 1000 times and the SMSE is computed as follows: 

                                  = ∑ ( ),                           (36) 

where  is the estimated value of  by any estimator in the rth 
replication. 

The estimated SMSE values for all estimators with −  and the 
combination of , , , and  respectively are given in Tables 1-9. 

As Tables 1-9 show, the values of the estimated SMSE of all 
estimators: OLSE, RE, AURE, and MAURE increase as  increases. 
Also, regarding , it is clear that there is an increase in the estimated 
values of SMSE for all estimators when  increases. Regarding the 
number of explanatory variables , there is an increase in the estimated 
SMSE of all estimators as  increases. While, regarding the sample size 

, the estimated values of SMSE decrease for all estimators as  
increases. Additionally, the new estimator, MAURE has the best 
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performance among the OLSE, RE, and AURE in all cases in the sense of 
SMSE, and the RE has better performance than the AURE. Furthermore, 
for different selection formulas of  estimators for RE, AURE, and 
MAURE, the  outperforms the other estimators as it has the lowest 
SMSE values. Moreover, the MAURE with  achieves the best 
performance compared to the RE, AURE, and OLSE in terms of SMSE.  

Table 1. Estimated SMSE values when = 50 and = 1 

 Estimator = 5 = 9 

  
  

0.80 0.90 0.99 0.80 0.90 0.99 

 OLSE 0.351048 0.673147 7.570923 0.851854 1.640154 15.913152 

 RE 0.277766 0.455258 4.146347 0.595955 1.047394 9.065484 

 AURE 0.339372 0.615007 6.137674 0.779581 1.423234 13.005796 

 MAURE 0.269706 0.424826 3.684082 0.559983 0.967068 8.167809 

 RE 0.188942 0.283050 2.038223 0.296838 0.471601 3.270827 

 AURE 0.288936 0.478880 3.958932 0.507166 0.848831 6.384525 

 MAURE 0.164448 0.228192 1.427405 0.235147 0.356344 2.260312 

 RE 0.344251 0.641357 5.574217 0.797512 1.420743 10.274806 

 AURE 0.350962 0.672130 7.156683 0.849215 1.616724 13.983278 

 MAURE 0.344167 0.640408 5.322501 0.795135 1.402247 9.500092 

 RE 0.350135 0.671090 7.540886 0.846091 1.626873 15.763641 

 AURE 0.351046 0.673143 7.570847 0.851825 1.640077 15.912171 

 MAURE 0.350133 0.671086 7.540811 0.846062 1.626796 15.762673 

 RE 0.349974 0.670427 7.512269 0.846179 1.625615 15.695905 

 AURE 0.351046 0.673140 7.570631 0.851826 1.640062 15.911075 

 MAURE 0.349971 0.670420 7.511980 0.846151 1.625524 15.693869 
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Table 2. Estimated SMSE values when = 50 and = 3 

 Estimator = 5 = 9 

  
  

0.80 0.90 0.99 0.80 0.90 0.99 

 OLSE 3.039852 6.330734 69.122354 7.482948 15.439034 145.920237 

 RE 1.720351 3.483515 37.395874 4.364396 8.896725 82.888974 

 AURE 2.522118 5.152129 55.578869 6.218038 12.736390 118.704602 

 MAURE 1.536798 3.096136 33.137072 3.951658 8.026685 74.689508 

 RE 0.966706 1.793912 17.340391 1.791992 3.293641 29.347271 

 AURE 1.781511 3.424272 34.179466 3.419519 6.399360 57.438825 

 MAURE 0.715599 1.279011 11.920441 1.275172 2.291857 20.231654 

 RE 2.979897 6.020608 50.722076 6.999737 13.269624 93.981254 

 AURE 3.039070 6.320577 65.247012 7.458809 15.199968 127.847661 

 MAURE 2.979137 6.011147 48.382537 6.978083 13.082144 86.839344 

 RE 3.032093 6.311004 68.852863 7.433542 15.311411 144.560133 

 AURE 3.039839 6.330694 69.121672 7.482704 15.438289 145.911325 

 MAURE 3.032080 6.310964 68.852185 7.433301 15.310676 144.551342 

 RE 3.030598 6.304222 68.586192 7.433669 15.297053 143.905224 

 AURE 3.039834 6.330662 69.119650 7.482705 15.438111 145.900621 

 MAURE 3.030580 6.304150 68.583517 7.433429 15.296143 143.886001 
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Table 3. Estimated SMSE values when = 50 and = 5 

 Estimator = 5 = 9 

  
  

0.80 0.90 0.99 0.80 0.90 0.99 

 OLSE 8.630817 17.899826 194.851426 21.288998 43.234012 400.941836 

 RE 4.783869 9.845366 107.513769 12.402166 25.129168 227.590711 

 AURE 7.086631 14.542416 158.262542 17.651156 35.879476 326.970650 

 MAURE 4.255089 8.756691 95.814029 11.230123 22.705321 204.764437 

 RE 2.463440 4.743140 49.689387 4.754952 9.215763 79.683001 

 AURE 4.712497 9.223908 97.519096 9.287703 17.956712 155.978852 

 MAURE 1.749650 3.310729 34.336293 3.290024 6.391755 54.896390 

 RE 8.460256 17.006468 143.538171 19.894838 37.265187 257.908949 

 AURE 8.628584 17.870437 184.244358 21.219670 42.581609 351.607296 

 MAURE 8.458086 16.979093 137.079943 19.832607 36.753015 238.120529 

 RE 8.608849 17.842800 194.072116 21.144586 42.882064 397.214581 

 AURE 8.630780 17.899709 194.849440 21.288282 43.231966 400.917430 

 MAURE 8.608813 17.842684 194.070142 21.143876 42.880042 397.190504 

 RE 8.604589 17.823086 193.298586 21.144802 42.841971 395.410324 

 AURE 8.630765 17.899614 194.843527 21.288284 43.231472 400.887925 

 MAURE 8.604537 17.822876 193.290772 21.144095 42.839465 395.357493 
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Table 4. Estimated SMSE values when = 100 and = 1 

 Estimator = 5 = 9 

  
  

0.80 0.90 0.99 0.80 0.90 0.99 

 OLSE 0.197499 0.421659 4.389635 0.533123 1.151260 11.165997 

 RE 0.173133 0.325312 2.429037 0.422386 0.801352 6.437291 

 AURE 0.195383 0.405501 3.607418 0.512868 1.051568 9.253197 

 MAURE 0.171399 0.314325 2.157773 0.409258 0.753415 5.806203 

 RE 0.128588 0.216762 1.309512 0.235296 0.399197 2.566514 

 AURE 0.179118 0.342233 2.504849 0.380990 0.699534 5.070289 

 MAURE 0.118753 0.185593 0.936808 0.196278 0.312340 1.760954 

 RE 0.196425 0.415713 3.862609 0.522184 1.094061 8.457010 

 AURE 0.197495 0.421606 4.345748 0.532947 1.149028 10.570899 

 MAURE 0.196421 0.415661 3.826253 0.522014 1.092013 8.113700 

 RE 0.197391 0.421378 4.386405 0.532663 1.150074 11.152656 

 AURE 0.197499 0.421659 4.389633 0.533123 1.151259 11.165984 

 MAURE 0.197390 0.421377 4.386404 0.532662 1.150073 11.152643 

 RE 0.197375 0.421297 4.383190 0.532581 1.149772 11.145165 

 AURE 0.197499 0.421659 4.389628 0.533122 1.151259 11.165967 

 MAURE 0.197374 0.421296 4.383184 0.532580 1.149771 11.145135 
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Table 5. Estimated SMSE values when = 100 and = 3 

 Estimator = 5 = 9 

  
  

0.80 0.90 0.99 0.80 0.90 0.99 

 OLSE 1.836521 3.721732 41.420301 4.697253 9.744537 106.245569 

 RE 1.088320 2.059638 23.262280 2.799464 5.690927 61.708367 

 AURE 1.582763 3.073866 34.162841 3.991788 8.142378 88.450082 

 MAURE 0.980847 1.825556 20.794584 2.541842 5.146614 55.734592 

 RE 0.644187 1.126178 11.224147 1.236926 2.391282 23.732535 

 AURE 1.178257 2.150797 21.976346 2.386128 4.667407 46.945341 

 MAURE 0.482374 0.805348 7.795781 0.875519 1.667799 16.266963 

 RE 1.826005 3.669841 36.389417 4.598294 9.265204 80.357800 

 AURE 1.836483 3.721261 41.003378 4.695617 9.725614 100.557588 

 MAURE 1.825967 3.669380 36.043237 4.596718 9.247873 77.064373 

 RE 1.835496 3.719337 41.388529 4.693235 9.734803 106.118039 

 AURE 1.836521 3.721730 41.420286 4.697250 9.744529 106.245452 

 MAURE 1.835495 3.719336 41.388514 4.693232 9.734795 106.117922 

 RE 1.835334 3.718626 41.356306 4.692484 9.732228 106.044581 

 AURE 1.836520 3.721730 41.420238 4.697249 9.744524 106.245278 

 MAURE 1.835333 3.718624 41.356244 4.692480 9.732216 106.044291 
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Table 6. Estimated SMSE values when = 100 and = 5 

 Estimator = 5 = 9 

  
  

0.80 0.90 0.99 0.80 0.90 0.99 

 OLSE 4.961537 10.363294 104.835006 13.043441 27.648155 284.209160 

 RE 2.755104 5.707858 56.151382 7.647085 16.322096 164.782091 

 AURE 4.109348 8.492974 84.567274 10.950440 23.168192 235.838522 

 MAURE 2.443945 5.067522 49.515441 6.921420 14.817160 148.951511 

 RE 1.517399 2.828932 25.404208 3.184078 6.514651 61.970643 

 AURE 2.887524 5.569688 51.575793 6.276990 12.873790 124.164654 

 MAURE 1.087532 1.949507 16.826291 2.195238 4.469673 41.748776 

 RE 4.934403 10.214606 91.781732 12.770174 26.263339 215.154084 

 AURE 4.961440 10.361928 103.725956 13.038933 27.593654 269.020124 

 MAURE 4.934307 10.213267 90.864164 12.765828 26.213394 206.403098 

 RE 4.958895 10.356420 104.755305 13.032356 27.619745 283.863684 

 AURE 4.961536 10.363291 104.834967 13.043434 27.648132 284.208842 

 MAURE 4.958894 10.356417 104.755266 13.032349 27.619723 283.863366 

 RE 4.958476 10.354372 104.674354 13.030276 27.612206 283.664253 

 AURE 4.961535 10.363289 104.834848 13.043431 27.648119 284.208368 

 MAURE 4.958475 10.354368 104.674197 13.030266 27.612170 283.663463 
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Table 7. Estimated SMSE values when = 200 and = 1 

 Estimator = 5 = 9 

  
  

0.80 0.90 0.99 0.80 0.90 0.99 

 OLSE 0.098297 0.189498 1.820089 0.200284 0.419871 4.255156 

 RE 0.091767 0.164256 1.028742 0.179225 0.333126 2.445291 

 AURE 0.097999 0.187089 1.523711 0.198416 0.404147 3.499996 

 MAURE 0.091498 0.162308 0.916877 0.177694 0.322692 2.210073 

 RE 0.075470 0.120889 0.575493 0.116733 0.185585 1.038406 

 AURE 0.094398 0.170006 1.080374 0.167233 0.294187 1.969621 

 MAURE 0.072824 0.110878 0.420883 0.104561 0.155906 0.750040 

 RE 0.098165 0.188863 1.751707 0.199511 0.415245 3.802195 

 AURE 0.098297 0.189496 1.818359 0.200282 0.419832 4.215825 

 MAURE 0.098164 0.188861 1.750070 0.199509 0.415207 3.769677 

 RE 0.098284 0.189470 1.819776 0.200240 0.419749 4.253699 

 AURE 0.098297 0.189498 1.820089 0.200284 0.419871 4.255155 

 MAURE 0.098283 0.189469 1.819775 0.200237 0.419748 4.253698 

 RE 0.098281 0.189460 1.819392 0.200234 0.419728 4.252935 

 AURE 0.098297 0.189498 1.820088 0.200284 0.419871 4.255155 

 MAURE 0.098280 0.189457 1.819390 0.200233 0.419726 4.252934 
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Table 8. Estimated SMSE values when = 200 and = 3 

 Estimator = 5 = 9 

  
  

0.80 0.90 0.99 0.80 0.90 0.99 

 OLSE 0.861388 1.657872 17.218996 1.786755 3.707291 40.984078 

 RE 0.586259 0.976489 9.348854 1.153346 2.190208 23.693803 

 AURE 0.790002 1.419442 13.937248 1.572577 3.113270 33.835942 

 MAURE 0.548799 0.879685 8.285206 1.067440 1.988487 21.429132 

 RE 0.369010 0.564186 4.484363 0.550239 0.943431 8.734934 

 AURE 0.625578 1.037606 8.880905 1.002341 1.795227 17.309635 

 MAURE 0.297791 0.421426 3.073438 0.415131 0.678498 5.958965 

 RE 0.860214 1.652257 16.579394 1.779666 3.665643 36.538292 

 AURE 0.861387 1.657860 17.202946 1.786733 3.706934 40.604536 

 MAURE 0.860213 1.652244 16.564196 1.779645 3.665293 36.223355 

 RE 0.861274 1.657624 17.216060 1.786334 3.706212 40.969344 

 AURE 0.861388 1.657872 17.218996 1.786755 3.707290 40.984074 

 MAURE 0.861273 1.657622 17.216059 1.786333 3.706211 40.969340 

 RE 0.861247 1.657517 17.212426 1.786301 3.706007 40.961513 

 AURE 0.861388 1.657872 17.218994 1.786755 3.707290 40.984068 

 MAURE 0.861246 1.657516 17.212424 1.786300 3.706006 40.961504 

 

 

 

 



21 
 

Table 9. Estimated SMSE values when = 200 and = 5 

 Estimator = 5 = 9 

  
  

0.80 0.90 0.99 0.80 0.90 0.99 

 OLSE 2.380186 4.431373 49.868205 4.962694 11.010611 107.951265 

 RE 1.370403 2.367388 27.488886 2.988804 6.480510 61.518124 

 AURE 2.015829 3.570195 40.706469 4.215498 9.230612 88.625519 

 MAURE 1.226222 2.082414 24.443784 2.727965 5.875739 55.329943 

 RE 0.764650 1.245046 13.157329 1.312507 2.564345 22.921840 

 AURE 1.434322 2.419482 25.807951 2.522152 5.011295 45.083946 

 MAURE 0.556001 0.872252 9.116656 0.932153 1.781586 15.811685 

 RE 2.376862 4.416384 48.002718 4.943094 10.883740 96.471783 

 AURE 2.380184 4.431340 49.821361 4.962634 11.009521 106.960320 

 MAURE 2.376859 4.416351 47.958358 4.943033 10.882671 95.651511 

 RE 2.379865 4.430710 49.859615 4.961528 11.007315 107.914116 

 AURE 2.380186 4.431373 49.868204 4.962694 11.010610 107.951255 

 MAURE 2.379864 4.430709 49.859614 4.961527 11.007314 107.914106 

 RE 2.379788 4.430425 49.848977 4.961438 11.006688 107.894352 

 AURE 2.380186 4.431373 49.868200 4.962694 11.010610 107.951242 

 MAURE 2.379787 4.430424 49.848972 4.961437 11.006687 107.894330 
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7. Real Data Example 

In this section, a real data set of Total National Research and 
Development Expenditures is considered as a percent of Gross National 
Product by Country: 1972-1986 according to Gruber (1998) and later 
analyzed by Li and Yang (2011) and Arumairajan and Wijekoon (2017). 
This data set involves 10 observations. The response variable  as well as 
the four explanatory variables , , , and  are defined as follows: y 
is the percentage spent by the United States,  is the percent spent by 
France,   is the percent spent by West Germany,  is the percent spent 
by Japan, and  is the percent spent by the former Soviet Union.  

The statistic value of the Shapiro-Wilk normality test equals to 
0.91333 with − = 0.3047, which indicates the normality of  the 
response variable  at 5% significance level. 

The correlation matrix of the explanatory variables is as follows: 

1
0.89

0.89
1

0.92
0.96

0.31
0.16

0.92
0.31

0.96
0.16

1
0.33

0.33
1

 

It is obvious that there are correlations greater than 0.80 between 
 ,  , and   which indicates the existence of high 

relationship between the explanatory variables. 

Also, for checking the presence of multicollinearity, the condition 
number ( ) of the data is computed by 

                    = (max ( )/min ( )) ⁄ , = 1,2, … , ,                 (37) 

where max ( ) and min ( ) are the largest and smallest eigenvalues of 
 respectively. 

Since the eigenvalues of  matrix are obtained as = 302.962606, 
= 0.728305, = 0.044569, and = 0.034520, the value of  is 

93.682340 shows the presence of severe multicollinearity in this data. 
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The estimated coefficients and SMSE of the OLSE, RE, AURE, 
and MAURE for −  are given in Table 10. 

Table 10. Estimated coefficients and SMSE of the estimators 

Estimator     SMSE 
OLSE 0.64546 0.08959 0.14356 0.15262 0.08079       
RE  0.58264 0.10653 0.16818 0.15972 0.06280 
  0.54318 0.11792 0.18291 0.16415 0.05885 
  0.58265 0.10653 0.16818 0.15972 0.06280 
  0.58814 0.10498 0.16608 0.15910 0.06380 
  0.57288 0.10930 0.17188 0.16082 0.06130 
       
AURE  0.63641 0.08736 0.14075 0.15230 0.07698 
  0.62154 0.08378 0.13640 0.15180 0.07162 
  0.63642 0.08736 0.14075 0.15230 0.07699 
  0.63793 0.08773 0.14121 0.15235 0.07759 
  0.63339 0.08663 0.13985 0.15219 0.07581        
MAURE  0.57436 0.10401 0.16535 0.15939 0.06133 
  0.52256 0.11086 0.17564 0.16328 0.05845 
  0.57436 0.10401 0.16535 0.15939 0.06133 
  0.58119 0.10290 0.16371 0.15882 0.06240 
  0.56199 0.10588 0.16813 0.16037 0.05981 

 

Table 10 shows that the new estimator, MAURE has the smallest 
SMSE values than other estimators for all values of .  

8. Conclusion 

In this paper, for overcoming multicollinearity in linear regression 
model, a new estimator, MAURE was presented with its statistical 
characteristics. By considering the criteria of MMSE and SB, the 
comparisons between the new estimator, MAURE and the OLSE, RE, 
and AURE were provided. Further, a study of Monte Carlo simulation 
and a real data example were conducted to evaluate the performance of 
the MAURE versus the other existing estimators under the SMSE 
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criterion. The results showed the superiority of the new estimator, 
MAURE over all existing estimators in terms of SMSE. So, the MAURE 
can be safely used when multicollinearity exists in a linear regression 
model.   
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