On the Modified Almost Unbiased Ridge Estimator in Linear Regression Model

Enas Gawdat Yehia
Department of Statistics, Faculty of Commerce (Girls' Branch) Al-Azhar University, Tafahna Al-Ashraf, Egypt.

Abstract

In order to overcome the negative effects caused by multicollinearity between the explanatory variables in the linear regression model, a new estimator namely modified almost unbiased ridge estimator is presented with its statistical characteristics in this paper. Also, the matrix mean squared error and squared bias criteria are adopted as a basis for comparisons between the new estimator and the ordinary least squares estimator, ridge estimator, and almost unbiased ridge estimator. Further, selection of the biasing parameter is discussed. Moreover, to check the performance of the new estimator versus the other estimators considered in this paper in the sense of scalar mean squared error, a study of Monte Carlo simulation and a real data example are conducted. The results indicate that in terms of scalar mean squared error, the new estimator, modified almost unbiased ridge estimator outperforms the others in use. So, it can be safely used when multicollinearity exists in a linear regression model.

Keywords: Multicollinearity, Ridge estimator, Almost unbiased ridge estimator, Matrix mean squared error, Monte Carlo simulation.

1. Introduction

In linear regression model, the problem of multicollinearity occurs in the existence of linear dependencies between the explanatory variables. It is well known that ordinary least squares (OLS) estimation is the preferred method for estimating the parameters in linear regression model since it gives an unbiased estimator with minimum variance [Johnson and

Wichern (2007)]. However, when the problem of multicollinearity exists, the ordinary least squares estimator (OLSE) will be unstable with high variance [Vinod and Ullah (1981)].

To circumvent the multicollinearity problem in linear regression, many popular estimators of biased estimation methods have been introduced. These estimators include the Stein estimator by Stein (1956), the principal component estimator by Massy (1965), the ridge estimator by Hoerl and Kennard (1970), the Liu estimator by Liu (1993), and the Liu-type estimator by Liu (2003). Also, two versions of the twoparameter estimator by Özkale and Kaçiranlar (2007) and Yang and Chang (2010), the ridge-type estimator by Kibria and Lukman (2020), the modified one-parameter Liu estimator by Lukman et al. (2020), the generalized Kibria-Lukman estimator by Dawoud et al. (2022), and the new two-parameter estimator by Owolabi et al. (2022) were introduced for the linear regression model.

Another set of suggested estimators for dealing with multicollinearity are the almost unbiased estimators. For the linear regression model, the almost unbiased ridge estimator (AURE) by Singh et al. (1986), the almost unbiased Liu estimator by Alheety and Kibria (2009), the almost unbiased ridge-type principal component estimator and the almost unbiased Liu-type principal component estimator by Li and Yang (2014), the modified almost unbiased Liu estimator by Armairajan and Wijekoon (2017), and the almost unbiased Liu principal component estimator by Ahmed et al. (2021) were presented.

In this paper, a new estimator namely modified almost unbiased ridge estimator (MAURE) is proposed for overcoming the effects of multicollinearity in linear regression.

This paper is structured as follows. In Section 2, for linear regression model, the OLSE, RE, and AURE and their statistical characteristics are discussed. In Section 3, the new estimator, MAURE is presented. In Section 4, the superiority of the MAURE over the OLSE, RE, AURE based on the criteria of matrix mean squared error (MMSE) and squared bias (SB) is provided. In Section 5, selection of the biasing parameter is
given. In Section 6, a study of Monte Carlo simulation is performed to compare the performance of the new estimator, MAURE with other considered estimators: OLSE, RE, and AURE in terms of scalar mean squared error (SMSE). Also, a real data example is included in Section 7. Finally, in Section 8, the conclusion is given.

2. Statistical Methodology

The linear regression model has the following standard form:

$$
\begin{equation*}
y=X \beta+\epsilon, \tag{1}
\end{equation*}
$$

where y is a $n \times 1$ vector of response variable, X is a $n \times m$ full rank matrix of n observations on m explanatory variables, β is a $m \times 1$ vector of unknown regression coefficients, and ϵ is a $n \times 1$ vector of random error with mean vector $E(\epsilon)=0$ and covariance matrix $\operatorname{Cov}(\epsilon)=\sigma^{2} I_{n}$, I_{n} is an $n \times n$ identity matrix.

By considering the OLS method for estimating the regression coefficients, the OLSE of β can be obtained as follows:

$$
\begin{equation*}
\hat{\beta}_{O L S E}=V^{-1} X^{\prime} y, \tag{2}
\end{equation*}
$$

where $V=X^{\prime} X$.
The $\hat{\beta}_{O L S E}$ is an unbiased estimator and its covariance matrix is given as

$$
\begin{equation*}
\operatorname{Cov}\left(\hat{\beta}_{O L S E}\right)=\sigma^{2} V^{-1} \tag{3}
\end{equation*}
$$

The MMSE of $\hat{\beta}_{\text {OLSE }}$ is as follows:

$$
\begin{align*}
\operatorname{MMSE}\left(\hat{\beta}_{O L S E}\right) & =\operatorname{Cov}\left(\hat{\beta}_{O L S E}\right)+B\left(\hat{\beta}_{O L S E}\right) B^{\prime}\left(\hat{\beta}_{O L S E}\right) \tag{4}\\
& =\sigma^{2} V^{-1},
\end{align*}
$$

where $B($.$) denotes the bias vector.$
Also, the SMSE of $\hat{\beta}_{\text {OLSE }}$ is given as follows:

$$
\begin{align*}
\operatorname{SMSE}\left(\hat{\beta}_{\text {OLSE }}\right) & =\operatorname{tr}\left[\operatorname{MMSE}\left(\hat{\beta}_{\text {OLSE }}\right)\right] \tag{5}\\
& =\sigma^{2} \sum_{j=1}^{m} \frac{1}{\eta_{j}}
\end{align*}
$$

where η_{j} are the eigenvalues of V.
When the model (1) is suffering from multicollinearity because of correlated explanatory variables, the OLSE becomes biased and has high variance, which leads to unstable parameters estimates.

For tackling the effect of multicollinearity in linear regression model, Hoerl and Kennard (1970) introduced the RE which is defined as follows:

$$
\begin{align*}
\hat{\beta}_{R E} & =(V+k I)^{-1} V \hat{\beta}_{O L S E} \tag{6}\\
& =M_{k} \hat{\beta}_{O L S E},
\end{align*}
$$

where $M_{k}=(V+k I)^{-1} V$, and k is the biasing parameter called the ridge parameter, $k>0$.

The following statistical characteristics belong to the RE:

$$
\begin{gather*}
E\left(\hat{\beta}_{R E}\right)=M_{k} \beta \tag{7}\\
B\left(\hat{\beta}_{R E}\right)=\left(M_{k}-I\right) \beta \tag{8}\\
=-k(V+k I)^{-1} \beta \\
=\zeta_{1},(\text { say }) \\
\operatorname{Cov}\left(\hat{\beta}_{R E}\right)=\sigma^{2} M_{k} V^{-1} M_{k}^{\prime} \tag{9}\\
\operatorname{MMSE}\left(\hat{\beta}_{R E}\right)=\operatorname{Cov}\left(\hat{\beta}_{R E}\right)+B\left(\hat{\beta}_{R E}\right) B^{\prime}\left(\hat{\beta}_{R E}\right) \tag{10}\\
= \\
\sigma^{2} M_{k} V^{-1} M_{k}^{\prime}+\left(M_{k}-I\right) \beta \beta^{\prime}\left(M_{k}-I\right)^{\prime},
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{SMSE}\left(\hat{\beta}_{R E}\right)=\operatorname{tr}\left[\operatorname{MMSE}\left(\hat{\beta}_{R E}\right)\right] \tag{11}
\end{equation*}
$$

$$
=\sigma^{2} \sum_{j=1}^{m} \frac{\eta_{j}}{\left(k+\eta_{j}\right)^{2}}+\sum_{j=1}^{m} \frac{k^{2} \alpha_{j}^{2}}{\left(k+\eta_{j}\right)^{2}}
$$

where α_{j} is the j th element of $Q^{\prime} \hat{\beta}_{O L S E}$ and Q is an orthogonal matrix defined as $Q H Q^{\prime}=V, H=\operatorname{diag}\left(\eta_{1}, \eta_{2}, \ldots, \eta_{m}\right)$.

Based on the following definition, the AURE is proposed by Singh et al. (1986) in linear regression model.

Definition 1. Assume that $\hat{\beta}^{*}$ is a biased estimator of β and $B\left(\hat{\beta}^{*}\right)=$ $E\left(\hat{\beta}^{*}\right)-\beta=A \beta$ is the bias vector of $\hat{\beta}^{*}$. Then, the almost unbiased estimator of β is $\hat{\beta}=\hat{\beta}^{*}-A \hat{\beta}^{*}=(I-A) \hat{\beta}^{*}$. [Kadiyala (1984)]

The AURE is defined as follows:

$$
\begin{equation*}
\hat{\beta}_{A U R E}=G_{k} \hat{\beta}_{O L S E} \tag{12}
\end{equation*}
$$

where $G_{k}=I-k^{2}(V+k I)^{-2}$.
The statistical characteristics of the AURE are given as follows:

$$
\begin{gather*}
E\left(\hat{\beta}_{A U R E}\right)=G_{k} \beta \tag{13}\\
B\left(\hat{\beta}_{A U R E}\right)=\left(G_{k}-I\right) \beta \tag{14}\\
=-k^{2}(V+k I)^{-2} \beta \\
=\zeta_{2},(\text { say }) \\
\operatorname{Cov}\left(\hat{\beta}_{A U R E}\right)=\sigma^{2} G_{k} V^{-1} G_{k}^{\prime}, \tag{15}\\
\operatorname{MMSE}\left(\hat{\beta}_{A U R E}\right)=\operatorname{Cov}\left(\hat{\beta}_{A U R E}\right)+B\left(\hat{\beta}_{A U R E}\right) B^{\prime}\left(\hat{\beta}_{A U R E}\right) \tag{16}\\
=\sigma^{2} G_{k} V^{-1} G_{k}^{\prime}+\left(G_{k}-I\right) \beta \beta^{\prime}\left(G_{k}-I\right)^{\prime},
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{SMSE}\left(\hat{\beta}_{A U R E}\right)=\operatorname{tr}\left[\operatorname{MMSE}\left(\hat{\beta}_{A U R E}\right)\right] \tag{17}
\end{equation*}
$$

$$
=\sigma^{2} \sum_{j=1}^{m} \frac{\left(\eta_{j}^{2}+2 k \eta_{j}\right)^{2}}{\left(k+\eta_{j}\right)^{4} \eta_{j}}+\sum_{j=1}^{m} \frac{k^{4} \alpha_{j}^{2}}{\left(k+\eta_{j}\right)^{4}}
$$

3. The New Estimator

In this section, a new almost unbiased estimator, MAURE is proposed based on the RE and AURE as follows:

$$
\begin{align*}
\hat{\beta}_{M A U R E} & =G_{k} \hat{\beta}_{R E} \tag{18}\\
& =G_{k} M_{k} \hat{\beta}_{O L S E}
\end{align*}
$$

The new estimator, MAURE has the following characteristics:

$$
\begin{gather*}
E\left(\hat{\beta}_{M A U R E}\right)=G_{k} M_{k} \beta \tag{19}\\
B\left(\hat{\beta}_{M A U R E}\right)=\left(G_{k} M_{k}-I\right) \beta \tag{20}\\
=-k\left[(V+k I)^{2}+k V\right](V+k I)^{-3} \beta \\
=\zeta_{3},(\text { say }) \\
\operatorname{Cov}\left(\hat{\beta}_{M A U R E}\right)=\sigma^{2} G_{k} M_{k} V^{-1} G_{k}^{\prime} M_{k}^{\prime} \tag{21}\\
\operatorname{MMSE}\left(\hat{\beta}_{M A U R E}\right)=\operatorname{Cov}\left(\hat{\beta}_{M A U R E}\right)+B\left(\hat{\beta}_{M A U R E}\right) B^{\prime}\left(\hat{\beta}_{M A U R E}\right) \tag{22}\\
=\sigma^{2} G_{k} M_{k} V^{-1} G_{k}^{\prime} M_{k}^{\prime}+\left(G_{k} M_{k}-I\right) \beta \beta^{\prime}\left(G_{k} M_{k}-I\right)^{\prime},
\end{gather*}
$$

and

$$
\begin{align*}
& \operatorname{SMSE}\left(\hat{\beta}_{M A U R E}\right)=\operatorname{tr}\left[M M S E\left(\hat{\beta}_{M A U R E}\right)\right] \tag{23}\\
& \qquad=\sigma^{2} \sum_{j=1}^{m} \frac{\left[\left(k+\eta_{j}\right)^{2}-k^{2}\right]^{2} \eta_{j}}{\left(k+\eta_{j}\right)^{6}}+\sum_{j=1}^{m}\left[\frac{\left[\left(k+\eta_{j}\right)^{2}-k^{2}\right] \eta_{j}}{\left(k+\eta_{j}\right)^{3}}-1\right]^{2} \alpha_{j}^{2}
\end{align*}
$$

4. Superiority of the MAURE

Based on the MMSE and SB, the following comparisons are performed.

4.1 MMSE comparisons

When the comparison between any two estimators $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ of β is performed by the criterion of MMSE, the following Lemmas can be used:

Lemma 1. Suppose that F and Dare $n \times n$ matrices such that $F>0$, and $D \geq 0$. Then, $F>D$ if and only if $\eta_{\max }\left(D F^{-1}\right)<1$. [Rao et al. (2008)]

Lemma 2. For two estimators $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ of β, suppose that $S=$ $\operatorname{Cov}\left(\hat{\beta}_{1}\right)-\operatorname{Cov}\left(\hat{\beta}_{2}\right)$ is positive definite. Then, $\operatorname{MMSE}\left(\hat{\beta}_{1}\right)-\operatorname{MMSE}\left(\hat{\beta}_{2}\right)$ is non-negative definite if and only if $B_{2}^{\prime}\left[S+B_{1} B_{1}^{\prime}\right]^{-1} B_{2} \leq 1$, where B_{1} and B_{2} denote the bias vectors of $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ respectively. [Trenkler and Toutenburg (1990)]

The following comparisons are performed between the new estimator, MAURE and the OLSE, RE, and AURE by the MMSE criterion.

4.1.1 The MMSE comparison between the OLSE and MAURE

Using (4) and (22), the MMSE difference of the OLSE and MAURE is given by

$$
\begin{align*}
& \operatorname{MMSE}\left(\hat{\beta}_{\text {OLSE }}\right)-\operatorname{MMSE}\left(\hat{\beta}_{M A U R E}\right) \\
& =\sigma^{2}\left[V^{-1}-G_{k} M_{k} V^{-1} G_{k}^{\prime} M_{k}^{\prime}\right]-\left(G_{k} M_{k}-I\right) \beta \beta^{\prime}\left(G_{k} M_{k}-I\right)^{\prime} \tag{24}\\
& =\sigma^{2} A_{1}-\left(G_{k} M_{k}-I\right) \beta \beta^{\prime}\left(G_{k} M_{k}-I\right)^{\prime} \\
& =\sigma^{2} A_{1}-\zeta_{3} \zeta_{3}^{\prime}
\end{align*}
$$

where $A_{1}=V^{-1}-G_{k} M_{k} V^{-1} G_{k}^{\prime} M_{k}^{\prime}$.
Then, according to Lemma 2, Theorem 1 is stated as follows:
Theorem 1. When $\eta_{\max }\left(G_{k} M_{k} V^{-1} G_{k}^{\prime} M_{k}^{\prime}\right)<1$, the MAURE is superior to OLSE based on the MMSE criterion if and only if $\zeta_{3}^{\prime}\left[\sigma^{2} A_{1}\right]^{-1} \zeta_{3} \leq 1$.

Proof: Since V^{-1} and $G_{k} M_{k} V^{-1} G_{k}^{\prime} M_{k}^{\prime}$ are positive definite matrices, then, $A_{1}=V^{-1}-G_{k} M_{k} V^{-1} G_{k}^{\prime} M_{k}^{\prime}>0$ according to Lemma 1 if and only if
$\eta_{\max }\left(G_{k} M_{k} V^{-1} G_{k}^{\prime} M_{k}^{\prime}\right)<1$. Consequently, from Lemma 2, $\operatorname{MMSE}\left(\hat{\beta}_{O L S E}\right)-\operatorname{MMSE}\left(\hat{\beta}_{\text {MAURE }}\right)$ is a non-negative definite matrix if and only if $\beta^{\prime}\left(G_{k} M_{k}-I\right)^{\prime}\left[\sigma^{2} A_{1}\right]^{-1}\left(G_{k} M_{k}-I\right) \beta \leq 1$.

4.1.2 The MMSE comparison between the RE and MAURE

Using (10) and (22), the MMSE difference of the RE and MAURE is as follows:

$$
\begin{align*}
\operatorname{MMSE} & \left(\hat{\beta}_{R E}\right)-\operatorname{MMSE}\left(\hat{\beta}_{M A U R E}\right) \\
& =\sigma^{2}\left[M_{k} V^{-1} M_{k}^{\prime}-G_{k} M_{k} V^{-1} G_{k}^{\prime} M_{k}^{\prime}\right]+\left(M_{k}-I\right) \beta \beta^{\prime}\left(M_{k}-I\right)^{\prime} \\
& -\left(G_{k} M_{k}-I\right) \beta \beta^{\prime}\left(G_{k} M_{k}-I\right)^{\prime} \tag{25}\\
& =\sigma^{2}\left[F_{1}-D_{1}\right]+\zeta_{1} \zeta_{1}^{\prime}-\zeta_{3} \zeta_{3}^{\prime}
\end{align*}
$$

where $F_{1}=M_{k} V^{-1} M_{k}^{\prime}$, and $D_{1}=G_{k} M_{k} V^{-1} G_{k}^{\prime} M_{k}^{\prime}$.
Then, Theorem 2 is stated as follows:
Theorem 2. When $\eta_{\max }\left(D_{1} F_{1}^{-1}\right)<1$, the MAURE is superior to $R E$ based on the MMSE criterion if and only if $\zeta_{3}^{\prime}\left[\sigma^{2}\left(F_{1}-D_{1}\right)+\right.$ $\left.\zeta_{1} \zeta_{1}^{\prime}\right]^{-1} \zeta_{3} \leq 1$.

Proof: Since F_{1} and D_{1} are positive definite matrices, then, $F_{1}-D_{1}>0$ according to Lemma 1 if and only if $\eta_{\max }\left(D_{1} F_{1}^{-1}\right)<1$. Consequently, from Lemma 2, $\operatorname{MMSE}\left(\hat{\beta}_{R E}\right)-\operatorname{MMSE}\left(\hat{\beta}_{M A U R E}\right)$ is a non-negative definite matrix if and only if

$$
\beta^{\prime}\left(G_{k} M_{k}-I\right)^{\prime}\left[\sigma^{2}\left(F_{1}-D_{1}\right)+\left(M_{k}-I\right) \beta \beta^{\prime}\left(M_{k}-I\right)^{\prime}\right]^{-1}\left(G_{k} M_{k}-I\right) \beta \leq 1
$$

4.1.3 The MMSE comparison between the AURE and MAURE

Using (16) and (22), the MMSE difference of the AURE and MAURE is given as follows:

$$
\begin{aligned}
& \operatorname{MMSE}\left(\hat{\beta}_{A U R E}\right)-\operatorname{MMSE}\left(\hat{\beta}_{M A U R E}\right) \\
& \quad=\sigma^{2}\left[G_{k} V^{-1} G_{k}^{\prime}-G_{k} M_{k} V^{-1} G_{k}^{\prime} M_{k}^{\prime}\right]+\left(G_{k}-I\right) \beta \beta^{\prime}\left(G_{k}-I\right)^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& -\left(G_{k} M_{k}-I\right) \beta \beta^{\prime}\left(G_{k} M_{k}-I\right)^{\prime} \tag{26}\\
& =\sigma^{2}\left[F_{2}-D_{1}\right]+\zeta_{2} \zeta_{2}^{\prime}-\zeta_{3} \zeta_{3}^{\prime}
\end{align*}
$$

where $F_{2}=G_{k} V^{-1} G_{k}^{\prime}$.
Then, Theorem 3 is stated as follows:
Theorem 3. When $\eta_{\max }\left(D_{1} F_{2}^{-1}\right)<1$, the MAURE is superior to AURE based on the MMSE criterion if and only if $\zeta_{3}^{\prime}\left[\sigma^{2}\left(F_{2}-D_{1}\right)+\right.$ $\left.\zeta_{2} \zeta_{2}^{\prime}\right]^{-1} \zeta_{3} \leq 1$.

Proof: Since F_{2} and D_{1} are positive definite matrices, then, from Lemma $1, F_{2}-D_{1}>0$ if and only if $\eta_{\max }\left(D_{1} F_{2}^{-1}\right)<1$. Consequently, by Lemma 2, $\operatorname{MMSE}\left(\hat{\beta}_{A U R E}\right)-\operatorname{MMSE}\left(\hat{\beta}_{\text {MAURE }}\right)$ is a non-negative definite matrix if and only if

$$
\beta^{\prime}\left(G_{k} M_{k}-I\right)^{\prime}\left[\sigma^{2}\left(F_{2}-D_{1}\right)+\left(G_{k}-I\right) \beta \beta^{\prime}\left(G_{k}-I\right)^{\prime}\right]^{-1}\left(G_{k} M_{k}-I\right) \beta \leq 1 .
$$

4.2 Squared bias comparisons

Based on the SB criterion, the following comparisons are discussed between the MAURE and the RE and AURE.

4.2.1 The SB comparison between the RE and MAURE

From (8) and (20), the difference of SB between the RE and MAURE is given as follows:

$$
\begin{align*}
& \left\|B\left(\hat{\beta}_{R E}\right)\right\|^{2}-\left\|B\left(\hat{\beta}_{M A U R E}\right)\right\|^{2}=\beta^{\prime} k^{2}(V+k I)^{-2} \beta \\
& -\beta^{\prime} k^{2}(V+k I)^{-6}\left[(V+k I)^{2}+k V\right]^{2} \beta . \tag{27}
\end{align*}
$$

Then, Theorem 4 is given as follows:
Theorem 4. Under $S B$ criterion, $\left\|B\left(\hat{\beta}_{R E}\right)\right\|^{2}-\left\|B\left(\hat{\beta}_{M A U R E}\right)\right\|^{2}>0$ for $k>0$.

Proof: Since $\alpha=Q^{\prime} \beta$, the difference of SB between the RE and MAURE is

$$
\begin{aligned}
\left\|B\left(\hat{\beta}_{R E}\right)\right\|^{2}-\left\|B\left(\hat{\beta}_{M A U R E}\right)\right\|^{2} & =\alpha^{\prime} k^{2}(H+k I)^{-2} \alpha \\
& -\alpha^{\prime} k^{2}(H+k I)^{-6}\left[(H+k I)^{2}+k H\right]^{2} \alpha \\
& =\alpha^{\prime} R_{1} \alpha
\end{aligned}
$$

where $R_{1}=k^{2}\left[(H+k I)^{-2}-(H+k I)^{-6}\left[(H+k I)^{2}+k H\right]^{2}\right]$.
Therefore, for $k>0, \alpha^{\prime} R_{1} \alpha>0$.

4.2.2 The SB comparison between the AURE and MAURE

From (14) and (20), the difference of SB between the AURE and MAURE is given by

$$
\begin{align*}
&\left\|B\left(\hat{\beta}_{A U R E}\right)\right\|^{2}-\left\|B\left(\hat{\beta}_{M A U R E}\right)\right\|^{2}= \beta^{\prime} k^{4}(V+k I)^{-4} \beta \\
&-\beta^{\prime} k^{2}(V+k I)^{-6}\left[(V+k I)^{2}+k V\right]^{2} \beta \tag{28}
\end{align*}
$$

Then, Theorem 5 is stated as follows:
Theorem 5. Under $S B$ criterion, $\left\|B\left(\hat{\beta}_{A U R E}\right)\right\|^{2}-\left\|B\left(\hat{\beta}_{M A U R E}\right)\right\|^{2}>0$ for $k>0$.

Proof: Since $\alpha=Q^{\prime} \beta$, the difference of SB between the AURE and MAURE is

$$
\begin{gathered}
\left\|B\left(\hat{\beta}_{A U R E}\right)\right\|^{2}-\left\|B\left(\hat{\beta}_{M A U R E}\right)\right\|^{2}=\alpha^{\prime} k^{4}(H+k I)^{-4} \alpha \\
-\alpha^{\prime} k^{2}(H+k I)^{-6}\left[(H+k I)^{2}+k H\right]^{2} \alpha \\
=\alpha^{\prime} R_{2} \alpha
\end{gathered}
$$

where $R_{2}=k^{2}\left[k^{2}(H+k I)^{-4}-(H+k I)^{-6}\left[(H+k I)^{2}+k H\right]^{2}\right]$.
Therefore, for $k>0, \alpha^{\prime} R_{2} \alpha>0$.

5. Selection of \boldsymbol{k} Biasing Parameter

For determining the biasing parameter k, many methods have been proposed. Some of the more popular of these methods are considered as follows:

Hoerl and Kennard (1970) suggested the following estimator of k :

$$
\begin{equation*}
k_{1}=\frac{\widehat{\sigma}^{2}}{\widehat{\alpha}_{\text {max }}^{2}}, \tag{29}
\end{equation*}
$$

where $\hat{\sigma}^{2}=\frac{1}{n-m} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$, and $\hat{\alpha}_{\text {max }}^{2}$ is the maximum value of α_{j}^{2}.
Hoerl et al. (1975) suggested an alternative estimator as follows:

$$
\begin{equation*}
k_{2}=\frac{m \hat{\sigma}^{2}}{\hat{\alpha}^{\prime} \hat{\alpha}} . \tag{30}
\end{equation*}
$$

In Khalaf and Shukur (2005), the following estimator was proposed:

$$
\begin{equation*}
k_{3}=\frac{\widehat{\sigma}^{2} \eta_{\max }}{\hat{\sigma}^{2}(n-m)+\eta_{\max } \widehat{\alpha}_{\max }^{2}} . \tag{31}
\end{equation*}
$$

In addition, Alkhamisi et al. (2006) proposed an estimator of k as follows:

$$
\begin{equation*}
k_{4}=\operatorname{median}\left[\frac{\widehat{\sigma}^{2} \eta_{j}}{\hat{\sigma}^{2}(n-m)+\eta_{j} \widehat{\alpha}_{j}^{2}}\right], j=1,2, \ldots, m \tag{32}
\end{equation*}
$$

Further, Muniz and Kibria (2009) suggested the following estimator:

$$
\begin{equation*}
k_{5}=\left[\prod_{j=1}^{m}\left[\frac{\hat{\sigma}^{2} \eta_{j}}{\hat{\sigma}^{2}(n-m)+\eta_{j} \hat{\alpha}_{j}^{2}}\right]\right]^{\frac{1}{m}} \tag{33}
\end{equation*}
$$

6. Monte Carlo Simulation Study

A Monte Carlo simulation study is conducted using the R 4. 0. 3 programme to evaluate the performance of the new estimator, MAURE in the linear regression model against the OLSE, RE, and AURE in the sense of SMSE.

The explanatory variables are generated following McDonald and Galarneau (1975) as follows:

$$
\begin{equation*}
x_{i j}=\left[1-\rho^{2}\right]^{1 / 2} u_{i j}+\rho u_{i m}, i=1,2, \ldots, n, j=1,2, \ldots, m, \tag{34}
\end{equation*}
$$

where ρ^{2} represents the correlation degree between any two explanatory variables, and $u_{i j} \sim N(0,1)$ is the independent pseudo-random variable.

The response variable is obtained as follows:

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{m} x_{i m}+\epsilon_{i}, i=1,2, \ldots, n, \tag{35}
\end{equation*}
$$

where $\epsilon_{i} \sim N\left(0, \sigma^{2} I_{n}\right)$, and the coefficient β_{0} is chosen so that $\beta_{0}=0$, and $\sum_{j=1}^{m} \beta_{j}^{2}=1$, where $\beta_{1}=\beta_{2}=\cdots=\beta_{m}$ following Kibria (2003).

For $m=5$ and 9 explanatory variables, different values of $\rho=$ $0.80,0.90$, and 0.99 , different sample sizes $n=50,100$, and 200, and different values of error variance $\sigma^{2}=1,3$, and 5 are considered.

For a combination of the values of m, ρ, n, and σ^{2}, the generated data are repeated 1000 times and the SMSE is computed as follows:

$$
\begin{equation*}
\operatorname{SMSE}(\hat{\beta})=\frac{\sum_{r=1}^{1000}\left(\widehat{\beta}_{r}-\beta\right)^{\prime}\left(\widehat{\beta}_{r}-\beta\right)}{1000}, \tag{36}
\end{equation*}
$$

where $\hat{\beta}_{r}$ is the estimated value of β by any estimator in the r th replication.

The estimated SMSE values for all estimators with $k_{1}-k_{5}$ and the combination of n, σ^{2}, m, and ρ respectively are given in Tables 1-9.

As Tables 1-9 show, the values of the estimated SMSE of all estimators: OLSE, RE, AURE, and MAURE increase as ρ increases. Also, regarding σ^{2}, it is clear that there is an increase in the estimated values of SMSE for all estimators when σ^{2} increases. Regarding the number of explanatory variables m, there is an increase in the estimated SMSE of all estimators as m increases. While, regarding the sample size n, the estimated values of SMSE decrease for all estimators as n increases. Additionally, the new estimator, MAURE has the best
performance among the OLSE, RE, and AURE in all cases in the sense of SMSE, and the RE has better performance than the AURE. Furthermore, for different selection formulas of k estimators for RE, AURE, and MAURE, the k_{2} outperforms the other estimators as it has the lowest SMSE values. Moreover, the MAURE with k_{2} achieves the best performance compared to the RE, AURE, and OLSE in terms of SMSE.

Table 1. Estimated SMSE values when $n=50$ and $\sigma^{2}=1$

k	Estimator	$m=5$				$m=9$		
		0.80	0.90	0.99	0.80	0.90	0.99	
		OLSE	0.351048	0.673147	7.570923	0.851854	1.640154	
k_{1}	RE	0.277766	0.455258	4.146347	0.595955	1.047394	9.065484	
	AURE	0.339372	0.615007	6.137674	0.779581	1.423234	13.005796	
	MAURE	0.269706	0.424826	3.684082	0.559983	0.967068	8.167809	
k_{2}	RE	0.188942	0.283050	2.038223	0.296838	0.471601	3.270827	
	AURE	0.288936	0.478880	3.958932	0.507166	0.848831	6.384525	
	MAURE	0.164448	0.228192	1.427405	0.235147	0.356344	2.260312	
k_{3}	RE	0.344251	0.641357	5.574217	0.797512	1.420743	10.274806	
	AURE	0.350962	0.672130	7.156683	0.849215	1.616724	13.983278	
	MAURE	0.344167	0.640408	5.322501	0.795135	1.402247	9.500092	
k_{4}	RE	0.350135	0.671090	7.540886	0.846091	1.626873	15.763641	
	AURE	0.351046	0.673143	7.570847	0.851825	1.640077	15.912171	
	MAURE	0.350133	0.671086	7.540811	0.846062	1.626796	15.762673	
k_{5}	RE	0.349974	0.670427	7.512269	0.846179	1.625615	15.695905	
	AURE	0.351046	0.673140	7.570631	0.851826	1.640062	15.911075	
	MAURE	0.349971	0.670420	7.511980	0.846151	1.625524	15.693869	

Table 2. Estimated SMSE values when $n=50$ and $\sigma^{2}=3$

k	Estimator	$m=5$			$m=9$		
			ρ			ρ	
		0.80	0.90	0.99	0.80	0.90	0.99
k_{1}	OLSE	3.039852	6.330734	69.122354	7.482948	15.439034	145.920237
	RE	1.720351	3.483515	37.395874	4.364396	8.896725	82.888974
	AURE	2.522118	5.152129	55.578869	6.218038	12.736390	118.704602
k_{2}	MAURE	1.536798	3.096136	33.137072	3.951658	8.026685	74.689508
	RE	0.966706	1.793912	17.340391	1.791992	3.293641	29.347271
	AURE	1.781511	3.424272	34.179466	3.419519	6.399360	57.438825
k_{3}	MAURE	0.715599	1.279011	11.920441	1.275172	2.291857	20.231654
	RE	2.979897	6.020608	50.722076	6.999737	13.269624	93.981254
	AURE	3.039070	6.320577	65.247012	7.458809	15.199968	127.847661
k_{4}	MAURE	2.979137	6.011147	48.382537	6.978083	13.082144	86.839344
	RE	3.032093	6.311004	68.852863	7.433542	15.311411	144.560133
	AURE	3.039839	6.330694	69.121672	7.482704	15.438289	145.911325
k_{5}	MAURE	3.032080	6.310964	68.852185	7.433301	15.310676	144.551342
	RE	3.030598	6.304222	68.586192	7.433669	15.297053	143.905224
	AURE	3.039834	6.330662	69.119650	7.482705	15.438111	145.900621
	MAURE	3.030580	6.304150	68.583517	7.433429	15.296143	143.886001

Table 3. Estimated SMSE values when $n=50$ and $\sigma^{2}=5$

k	Estimator	$m=5$				$m=9$	
		0.80	0.90	0.99	0.80	0.90	0.99
		OLSE	8.630817	17.899826	194.851426	21.288998	43.234012

Table 4. Estimated SMSE values when $n=100$ and $\sigma^{2}=1$

k	Estimator	$m=5$			ρ		$m=9$
		0.80	0.90	0.99	0.80	0.90	0.99
k_{1}		RE	0.173133	0.325312	2.429037	0.422386	0.801352
	OLSE	0.197499	0.421659	4.389635	0.533123	1.151260	11.165997
	AURE	0.195383	0.405501	3.607418	0.512868	1.051568	9.253197
	MAURE	0.171399	0.314325	2.157773	0.409258	0.753415	5.806203
k_{2}	RE	0.128588	0.216762	1.309512	0.235296	0.399197	2.566514
	AURE	0.179118	0.342233	2.504849	0.380990	0.699534	5.070289
	MAURE	0.118753	0.185593	0.936808	0.196278	0.312340	1.760954
k_{3}	RE	0.196425	0.415713	3.862609	0.522184	1.094061	8.457010
	AURE	0.197495	0.421606	4.345748	0.532947	1.149028	10.570899
	MAURE	0.196421	0.415661	3.826253	0.522014	1.092013	8.113700
k_{4}	RE	0.197391	0.421378	4.386405	0.532663	1.150074	11.152656
	AURE	0.197499	0.421659	4.389633	0.533123	1.151259	11.165984
	MAURE	0.197390	0.421377	4.386404	0.532662	1.150073	11.152643
k_{5}	RE	0.197375	0.421297	4.383190	0.532581	1.149772	11.145165
	AURE	0.197499	0.421659	4.389628	0.533122	1.151259	11.165967
	MAURE	0.197374	0.421296	4.383184	0.532580	1.149771	11.145135

Table 5. Estimated SMSE values when $n=100$ and $\sigma^{2}=3$

k	Estimator	$m=5$			$m=9$		
		ρ			ρ		
		0.80	0.90	0.99	0.80	0.90	0.99
k_{1}	OLSE	1.836521	3.721732	41.420301	4.697253	9.744537	106.245569
	RE	1.088320	2.059638	23.262280	2.799464	5.690927	61.708367
	AURE	1.582763	3.073866	34.162841	3.991788	8.142378	88.450082
k_{2}	MAURE	0.980847	1.825556	20.794584	2.541842	5.146614	55.734592
	RE	0.644187	1.126178	11.224147	1.236926	2.391282	23.732535
	AURE	1.178257	2.150797	21.976346	2.386128	4.667407	46.945341
k_{3}	MAURE	0.482374	0.805348	7.795781	0.875519	1.667799	16.266963
	RE	1.826005	3.669841	36.389417	4.598294	9.265204	80.357800
	AURE	1.836483	3.721261	41.003378	4.695617	9.725614	100.557588
k_{4}	MAURE	1.825967	3.669380	36.043237	4.596718	9.247873	77.064373
	RE	1.835496	3.719337	41.388529	4.693235	9.734803	106.118039
	AURE	1.836521	3.721730	41.420286	4.697250	9.744529	106.245452
k_{5}	MAURE	1.835495	3.719336	41.388514	4.693232	9.734795	106.117922
	RE	1.835334	3.718626	41.356306	4.692484	9.732228	106.044581
	AURE	1.836520	3.721730	41.420238	4.697249	9.744524	106.245278
	MAURE	1.835333	3.718624	41.356244	4.692480	9.732216	106.044291

Table 6. Estimated SMSE values when $n=100$ and $\sigma^{2}=5$

k	Estimator	$m=5$				$m=9$	
		0.80	0.90	0.99	0.80	0.90	0.99
		OLSE	4.961537	10.363294	104.835006	13.043441	27.648155
k_{1}	RE	2.755104	5.707858	56.151382	7.647085	16.322096	164.782091
	AURE	4.109348	8.492974	84.567274	10.950440	23.168192	235.838522
	MAURE	2.443945	5.067522	49.515441	6.921420	14.817160	148.951511
k_{2}	RE	1.517399	2.828932	25.404208	3.184078	6.514651	61.970643
	AURE	2.887524	5.569688	51.575793	6.276990	12.873790	124.164654
	MAURE	1.087532	1.949507	16.826291	2.195238	4.469673	41.748776
k_{3}	RE	4.934403	10.214606	91.781732	12.770174	26.263339	215.154084
	AURE	4.961440	10.361928	103.725956	13.038933	27.593654	269.020124
	MAURE	4.934307	10.213267	90.864164	12.765828	26.213394	206.403098
k_{4}	RE	4.958895	10.356420	104.755305	13.032356	27.619745	283.863684
	AURE	4.961536	10.363291	104.834967	13.043434	27.648132	284.208842
	MAURE	4.958894	10.356417	104.755266	13.032349	27.619723	283.863366
k_{5}	RE	4.958476	10.354372	104.674354	13.030276	27.612206	283.664253
	AURE	4.961535	10.363289	104.834848	13.043431	27.648119	284.208368
	MAURE	4.958475	10.354368	104.674197	13.030266	27.612170	283.663463

Table 7. Estimated SMSE values when $n=200$ and $\sigma^{2}=1$

k	Estimator	$m=5$				m	
		0.80	0.90	0.99	0.80	0.90	0.99
k_{1}	RE	0.091767	0.164256	1.028742	0.179225	0.333126	2.445291
		OLSE	0.098297	0.189498	1.820089	0.200284	0.419871
4.255156							
	AURE	0.097999	0.187089	1.523711	0.198416	0.404147	3.499996
	MAURE	0.091498	0.162308	0.916877	0.177694	0.322692	2.210073
k_{2}	RE	0.075470	0.120889	0.575493	0.116733	0.185585	1.038406
	AURE	0.094398	0.170006	1.080374	0.167233	0.294187	1.969621
	MAURE	0.072824	0.110878	0.420883	0.104561	0.155906	0.750040
k_{3}	RE	0.098165	0.188863	1.751707	0.199511	0.415245	3.802195
	AURE	0.098297	0.189496	1.818359	0.200282	0.419832	4.215825
	MAURE	0.098164	0.188861	1.750070	0.199509	0.415207	3.769677
k_{4}	RE	0.098284	0.189470	1.819776	0.200240	0.419749	4.253699
	AURE	0.098297	0.189498	1.820089	0.200284	0.419871	4.255155
	MAURE	0.098283	0.189469	1.819775	0.200237	0.419748	4.253698
k_{5}	RE	0.098281	0.189460	1.819392	0.200234	0.419728	4.252935
	AURE	0.098297	0.189498	1.820088	0.200284	0.419871	4.255155
	MAURE	0.098280	0.189457	1.819390	0.200233	0.419726	4.252934

Table 8. Estimated SMSE values when $n=200$ and $\sigma^{2}=3$

k	Estimator	$m=5$			ρ		$m=9$
		0.80	0.90	0.99	0.80	0.90	0.99
		OLSE	0.861388	1.657872	17.218996	1.786755	3.707291

Table 9. Estimated SMSE values when $n=200$ and $\sigma^{2}=5$

k	Estimator	$m=5$			ρ	$m=9$		
		0.80	0.90	0.99	0.80	0.90	0.99	
		OLSE	2.380186	4.431373	49.868205	4.962694	11.010611	
k_{1}	RE	1.370403	2.367388	27.488886	2.988804	6.480510	61.518124	
	AURE	2.015829	3.570195	40.706469	4.215498	9.230612	88.625519	
	MAURE	1.226222	2.082414	24.443784	2.727965	5.875739	55.329943	
k_{2}	RE	0.764650	1.245046	13.157329	1.312507	2.564345	22.921840	
	AURE	1.434322	2.419482	25.807951	2.522152	5.011295	45.083946	
	MAURE	0.556001	0.872252	9.116656	0.932153	1.781586	15.811685	
k_{3}	RE	2.376862	4.416384	48.002718	4.943094	10.883740	96.471783	
	AURE	2.380184	4.431340	49.821361	4.962634	11.009521	106.960320	
	MAURE	2.376859	4.416351	47.958358	4.943033	10.882671	95.651511	
k_{4}	RE	2.379865	4.430710	49.859615	4.961528	11.007315	107.914116	
	AURE	2.380186	4.431373	49.868204	4.962694	11.010610	107.951255	
	MAURE	2.379864	4.430709	49.859614	4.961527	11.007314	107.914106	
k_{5}	RE	2.379788	4.430425	49.848977	4.961438	11.006688	107.894352	
	AURE	2.380186	4.431373	49.868200	4.962694	11.010610	107.951242	
	MAURE	2.379787	4.430424	49.848972	4.961437	11.006687	107.894330	

7. Real Data Example

In this section, a real data set of Total National Research and Development Expenditures is considered as a percent of Gross National Product by Country: 1972-1986 according to Gruber (1998) and later analyzed by Li and Yang (2011) and Arumairajan and Wijekoon (2017). This data set involves 10 observations. The response variable y as well as the four explanatory variables x_{1}, x_{2}, x_{3}, and x_{4} are defined as follows: y is the percentage spent by the United States, x_{1} is the percent spent by France, x_{2} is the percent spent by West Germany, x_{3} is the percent spent by Japan, and x_{4} is the percent spent by the former Soviet Union.

The statistic value of the Shapiro-Wilk normality test equals to 0.91333 with $p-$ value $=0.3047$, which indicates the normality of the response variable y at 5% significance level.

The correlation matrix of the explanatory variables is as follows:

$$
\left[\begin{array}{cccc}
1 & 0.89 & 0.92 & 0.31 \\
0.89 & 1 & 0.96 & 0.16 \\
0.92 & 0.96 & 1 & 0.33 \\
0.31 & 0.16 & 0.33 & 1
\end{array}\right]
$$

It is obvious that there are correlations greater than 0.80 between x_{1} and x_{2}, x_{1} and x_{3}, and x_{2} and x_{3} which indicates the existence of high relationship between the explanatory variables.

Also, for checking the presence of multicollinearity, the condition number ($C N$) of the data is computed by

$$
\begin{equation*}
C N=\left(\max \left(\eta_{j}\right) / \min \left(\eta_{j}\right)\right)^{1 / 2}, j=1,2, \ldots, m \tag{37}
\end{equation*}
$$

where $\max \left(\eta_{j}\right)$ and $\min \left(\eta_{j}\right)$ are the largest and smallest eigenvalues of $X^{\prime} X$ respectively.
Since the eigenvalues of $X^{\prime} X$ matrix are obtained as $\eta_{1}=302.962606$, $\eta_{2}=0.728305, \eta_{3}=0.044569$, and $\eta_{4}=0.034520$, the value of $C N$ is 93.682340 shows the presence of severe multicollinearity in this data.

The estimated coefficients and SMSE of the OLSE, RE, AURE, and MAURE for $k_{1}-k_{5}$ are given in Table 10.

Table 10. Estimated coefficients and SMSE of the estimators

Estimator		$\hat{\beta}_{1}$	$\hat{\beta}_{2}$	$\hat{\beta}_{3}$	$\hat{\beta}_{4}$	SMSE
OLSE		0.64546	0.08959	0.14356	0.15262	0.08079
RE	k_{1}	0.58264	0.10653	0.16818	0.15972	0.06280
	k_{2}	0.54318	0.11792	0.18291	0.16415	0.05885
	k_{3}	0.58265	0.10653	0.16818	0.15972	0.06280
	k_{4}	0.58814	0.10498	0.16608	0.15910	0.06380
	k_{5}	0.57288	0.10930	0.17188	0.16082	0.06130
AURE	k_{1}	0.63641	0.08736	0.14075	0.15230	0.07698
	k_{2}	0.62154	0.08378	0.13640	0.15180	0.07162
	k_{3}	0.63642	0.08736	0.14075	0.15230	0.07699
	k_{4}	0.63793	0.08773	0.14121	0.15235	0.07759
	k_{5}	0.63339	0.08663	0.13985	0.15219	0.07581
MAURE	k_{1}	0.57436	0.10401	0.16535	0.15939	0.06133
	k_{2}	0.52256	0.11086	0.17564	0.16328	0.05845
	k_{3}	0.57436	0.10401	0.16535	0.15939	0.06133
	k_{4}	0.58119	0.10290	0.16371	0.15882	0.06240
	k_{5}	0.56199	0.10588	0.16813	0.16037	0.05981

Table 10 shows that the new estimator, MAURE has the smallest SMSE values than other estimators for all values of k.

8. Conclusion

In this paper, for overcoming multicollinearity in linear regression model, a new estimator, MAURE was presented with its statistical characteristics. By considering the criteria of MMSE and SB, the comparisons between the new estimator, MAURE and the OLSE, RE, and AURE were provided. Further, a study of Monte Carlo simulation and a real data example were conducted to evaluate the performance of the MAURE versus the other existing estimators under the SMSE
criterion. The results showed the superiority of the new estimator, MAURE over all existing estimators in terms of SMSE. So, the MAURE can be safely used when multicollinearity exists in a linear regression model.

References

1. Ahmed, A. E., Ali, H. M., and Amal, H. A. (2021). Almost Unbiased Liu Principal Component Estimator in the Presence of Multicollinearity and Autocorrelation. The Egyptian Statistical Journal, 64(1), 21-33.
2. Alheety, M. I., and Kibria, B. M. G. (2009). On the Liu and Almost Unbiased Liu Estimators in the Presence of Multicollinearity with Heteroscedastic or Correlated Errors. Surveys in Mathematics and its Applications, 4, 155-167.
3. Alkhamisi, M., Khalaf, G., and Shukur, G. (2006). Some Modifications for Choosing Ridge Parameters. Communications in Statistics-Theory and Methods, 35(11), 2005-2020.
4. Arumairajan, S., and Wijekoon, P. (2017). Modified Almost Unbiased Liu Estimator in Linear Regression Model. Communications in Mathematics and Statistics, 5(3), 261-276.
5. Dawoud, I., Abonazel, M. R., and Awwad, F. (2022). Generalized Kibria-Lukman Estimator: Method, Simulation, and Application. Frontiers in Applied Mathematics and Statistics, 8, 1-6.
6. Gruber, M. H. J. (1998). Improving Efficiency by Shrinkage: The James-Stein and Ridge Regression Estimators. Dekker, Inc., New York.
7. Hoerl, A. E., and Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12(1), 5567.
8. Hoerl, A. E., Kennard, R. W., and Baldwin, K. F. (1975). Ridge Regression: Some Simulations. Communications in Statistics, 4(2), 105-123.
9. Johnson, R. A., and Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. Sixth Edition, Pearson Prentice Hall, New Jersey.
10. Kadiyala, K. (1984). A Class of Almost Unbiased and Efficient Estimators of Regression Coefficients. Economics Letters, 16, 293296.
11. Khalaf, G., and Shukur, G. (2005). Choosing Ridge Parameter for Regression Problems. Communications in Statistics-Theory and Methods, 34(5), 1177-1182.
12. Kibria, B. M. G. (2003). Performance of Some New Ridge Regression Estimators. Communications in Statistics-Simulation and Computation, 32(2), 419-435.
13. Kibria, B. M. G., and Lukman, A. F. (2020). A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications. Scientifica, 2020(1), 1-16.
14. Li, Y., and Yang, H. (2011). Two Kinds of Restricted Modified Estimators in Linear Regression Model. Journal of Applied Statistics, 38(7), 1447-1454.
15. Li, Y., and Yang, H. (2014). Two Classes of Almost Unbiased Type Principal Component Estimators in Linear Regression Model. Journal of Applied Mathematics, 2014(1), 1-6.
16. Liu, K. (1993). A New Class of Biased Estimate in Linear Regression. Communications in Statistics-Theory and Methods, 22(2), 393-402.
17. Liu, K. (2003). Using Liu-Type Estimator to Combat Collinearity. Communications in Statistics-Theory and Methods, 32(5), 10091020.
18. Lukman, A. F., Kibria, B. M. G., Ayinde, K., and Jegede, S. L. (2020). Modified One-Parameter Liu Estimator for the Linear Regression Model. Modelling and Simulation in Engineering, 2020(1), 1-17.
19. Massy, W. F. (1965). Principal Components Regression in Exploratory Statistical Research. Journal of the American Statistical Association, 60(309), 234-256.
20. McDonald, G. C., and Galarneau, D. I. (1975). A Monte Carlo Evaluation of Some Ridge-Type Estimators. Journal of the American Statistical Association, 70(350), 407-416.
21. Muniz, G., and Kibria, B. M. G. (2009). On Some Ridge Regression Estimators: An Empirical Comparisons. Communications in Statistics-Simulation and Computation, 38(3), 621-630.
22. Owolabi, A. T., Ayinde, K., Idowu, J. I., Oladapo, O. J., and Lukman, A. F. (2022). A New Two-Parameter Estimator in the Linear Regression Model with Correlated Regressors. Journal of Statistics Applications \& Probability, 11(2), 499-512.
23. Özkale, M. R., and Kaçiranlar, S. (2007). The Restricted and Unrestricted Two-Parameter Estimators. Communications in Statistics-Theory and Methods, 36(15), 2707-2725.
24. Rao, C. R., Toutenburg, H., Shalabh, and Heumann, C. (2008). Linear Models and Generalizations: Least Squares and Alternatives. Third Edition, Springer-Verlag, Berlin.
25. Singh, B., Chaubey, Y. P., and Dwivedi, T. D. (1986). An Almost Unbiased Ridge Estimator. The Indian Journal of Statistics, 48(3), 342-346.
26. Stein, C. (1956). Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1, 197-206.
27. Trenkler, G., and Toutenburg, H. (1990). Mean Squared Error Matrix Comparisons between Biased Estimators-An Overview of Recent Results. Statistical Papers, 31(1), 165-179.
28. Vinod, H. D., and Ullah, A. (1981). Recent Advances in Regression Methods. Dekker, New York.
29. Yang, H., and Chang, X. (2010). A New Two-Parameter Estimator in Linear Regression. Communications in Statistics-Theory and Methods, 39(6), 923-934.
