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Abstract 

Sigmoidal growth curves are a useful tool for modeling experimental 
growth data when growth proceeds sigmoidally over time. When the 
changes in response have a double sigmoid growth pattern, it is 
convenient to employ a double sigmoid growth model to be able to 
describe the data well. In this paper, new double sigmoidal growth curves 
are presented based on the Burr Type XII distribution. In addition, for 
modeling the proposed curves, the procedure of summation of two single 
sigmoidal growth curves is considered. The proposed models namely the 
double Burr Type XII–logistic sigmoid growth model and the modified 
double Burr Type XII–logistic sigmoid growth model. Furthermore, to 
estimate the parameters of the proposed models, the non-linear least 
squares and the maximum likelihood methods are used. Moreover, a 
simulation study and an application are carried out to examine the 
performance of the proposed models compared to some classical double 
sigmoid growth models. The results indicate that the proposed model, 
modified double Burr Type XII–logistic sigmoid growth model is 
superior to the other existing models.  

Keywords: Sigmoidal growth curve, Double sigmoid growth model, 
Double Burr Type XII–logistic model, Modified double Burr Type XII–
logistic model, Non-linear least squares. 

1. Introduction  

The sigmoid (S-shaped) curves have been employed in many studies 
of growth analyses in various fields such as physics, biology, economics, 
and medicine. The S-curve begins with an exponential growth, slow down 
when saturation occurs, and completes at maturity. When a single-phase 



2 
 

behavior of growth is along the entire path, one of the single sigmoid 
growth models such as the Brody, logistic, Weibull, and the Burr Type 
XII sigmoid growth models can be used for describing the growth data. 
While, when the double-phasic behavior of a growth path occurs because 
of oscillatory behavior of growth or by a combination of two single 
phases of growth rate, one of the double sigmoid growth models is 
preferred such as the double logistic sigmoid growth model by Carrillo 
and González (2002), and the modified double logistic sigmoid growth 
model by Fernandes et al. (2017). For more details on the sigmoid growth 
models, one can refer to Tsoularis and Wallace (2002), Seber and Wild 
(2003), Fernandes et al. (2017), Cao et al. (2019), Ukalska and 
Jastrzebowski (2019), and Shen (2020). 

Since many growth data have double sigmoidal growth pattern, 
several studies have been used and proposed double growth models for 
analyzing the growth data such as Hau et al. (1993) used some 
mathematical functions as double logistic, double Gompertz, 
monomolecular-logistic, and monomolecular-Gompertz to describe 
disease progress curves of double sigmoid pattern from epidemics of 
sugarcane smut, Carrillo and González (2002) analyzed the growth of 
electricity consumption in the United States by double logistic growth 
curves, Fernandes et al. (2017) used the double logistic and double 
Gompertz growth models for analyzing the growth pattern of coffee 
berries, Letchov and Roychev (2017) analyzed the growth kinetics of 
grape berry by the double logistic sigmoid growth model, Tello and 
Forneck (2018) described the development of grapevine bunch 
compactness by a double sigmoid model, El Aferni et al. (2021) applied 
the double sigmoid Boltzmann model to study the COVID-19 spread in 
fifteen different countries, and Pal and Mitra (2021) analyzed the number 
of cumulative cases of COVID-19 in Iceland by the double sigmoid 
Boltzmann model. 

The purpose of this paper is to introduce proposed double sigmoidal 
growth curves based on the Burr Type XII distribution for describing 
various phenomena that have double sigmoid growth patterns. Also, 
modeling the new proposed curves is aimed. The rest of this paper is 
constructed as follows. In Section 2, the proposed curves of double 
sigmoidal growth and their modeling are presented. In Section 3, the 
parameters of the proposed models are estimated by the non-linear least 
squares (NLS) and the maximum likelihood (ML) estimation methods. In 
Section 4, a Monte Carlo simulation is carried out to investigate the 
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performance of the proposed models against some existing models of 
double sigmoidal growth. In Section 5, an application using confirmed 
new cases of COVID-19 in Egypt in 2020 is provided. At last, the 
conclusions are shown in Section 6. 

2. The Proposed Curves of Double Sigmoidal Growth and their 
Modeling 

There are different procedures for modeling the single sigmoidal 
curve to the single sigmoid growth models; one important of these 
procedure formulas is based on the cumulative distribution function 
(CDF) as proposed by Seber and Wild (2003). The general formula of 
sigmoidal curve based on the distribution function can be defined as 
follows: 

(ݔ)݂                                     = ߚ + ߙ) − ݔ)൫݇ܨ(ߚ −  ൯,                     (1)(ߛ

where ݔ is the independent variable, ߛ is the inflection point, ߙ is the 
maximum value of the dependent variable in the data, ߙ >  is the ߚ ,0
minimum value of the response variable, ܨ(. ) is the CDF of a continuous 
random variable, and ݇ is a scale parameter on ݔ , ݇ > 0. 

By considering the CDF of logistic, and Burr Type XII distributions, 
the following functions of curves of single sigmoidal growth are given as 
follows: 

                              ݂(ݔ, (ࣂ = ఈ

ଵାൣషೖ൫ ೣషം൯൧   , ࣂ = ,ߙ) ݇,  ᇱ,                  (2)(ߛ

݂(ݔ, (ࣂ = ߚൣ + ߙ) − 1 ](ߚ − (1 + ,)ି]൧(ݔ݇) ࣂ = ,ߙ) ,ߚ ݇, ܿ,  ᇱ,  (3)(ݎ

where ݂(ݔ, ,ݔ)and ݂ (ࣂ  are the functions of single logistic and Burr (ࣂ
Type XII sigmoidal growth curves, ࣂ is the vector of parameters, and ܿ 
and ݎ are the shape and scale parameters respectively of the Burr Type 
XII distribution. 

In the presence of the double-phase behavior of the sigmoidal growth 
curve, the double logistic sigmoidal growth curve is given as follows: 
 

݂(ݔ, (ࣂ = ఈభ

ଵାൣషೖభ൫ ೣషംభ൯൧ + ఈమ

ଵାൣషೖమ൫ ೣషംమ൯൧ , ࣂ = ,ଵߙ) ݇ଵ, ,ଵߛ ,ଶߙ ݇ଶ,  (4)    ,׳(ଶߛ

where ߙଵ and ߙଶ are the upper asymptotes in the first and second curves 
respectively, ݇ଵ and ݇ଶ are the slope factors of the two phases 
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respectively, and ߛଵ and ߛଶ are the first and second points of inflection 
with  ߛଶ >  .ଵߛ

Also, the modified double logistic sigmoidal growth curve can be 
obtained by the following function: 

ெ݂(ݔ , (ࣂ = ఈభ

ଵା [షೖభ( ೣషംభ)] + ఈమିఈభ

ଵା[షೖమ( ೣషംమ)]  , ࣂ = ,ଵߙ) ݇ଵ, ,ଵߛ ,ଶߙ ݇ଶ,  (5) ,׳(ଶߛ

where ߙଵ and (ߙଶ −  ଵ) as two upper asymptotes in the first and secondߙ
curves respectively. 

Consequently, Carrillo and González (2002) introduced the double 
logistic sigmoid growth model using the summation of two single logistic 
sigmoidal growth curves in (4) by the following form: 

()ݕ = ݂ ,ݔ) ߝ+(ࣂ ࣂ      ,  = ,ଵߙ) ݇ଵ, ,ଵߛ ,ଶߙ ݇ଶ,  ,׳(ଶߛ

                         = ఈభ

ଵାൣషೖభ൫ ೣషംభ൯൧ + ఈమ

ଵାൣషೖమ൫ ೣషംమ൯൧  ,                           (6)ߝ+

where ݕ()  ;  ݅ = 1, … , ݊ is the response variable in the double logistic 
sigmoid growth model, ݔ  is the independent variable, ߙଵ and ߙଶ are the 
upper asymptotes, ݇ଵ and ݇ଶ  are related to the initial levels, ߛଵand ߛଶare 
the first and second points of inflection with ߛଶ >   is theߝ ଵ, andߛ
random error term which is independent and identically distributed 
(݅. ݅. ݀. ) with ܰ(0,  .(ଶߪ

Also, the modified double logistic sigmoid growth model was introduced 
by Fernandes et al. (2017) as follows: 

(ெ)ݕ = ெ݂(ݔ, , ߝ+(ࣂ ࣂ = ,ଵߙ) ݇ଵ, ଵߛ , ,ଶߙ ݇ଶ,  ,׳(ଶߛ

                           = ఈభ
ଵା[షೖభ( ೣషംభ)] + ఈమିఈభ

ଵା[షೖమ( ೣషംమ)] ߝ+ .                          (7) 

In this section, proposed two curves of double sigmoidal growth are 
presented based on two single sigmoidal growth curves. The first new 
proposed curve called the double Burr Type XII–logistic sigmoidal 
growth curve in which based on (2) and (3) as follows: 

݂(ݔ , (ࣂ = ߚൣ + ଵߙ) − 1 ](ߚ − (1 + (݇ଵݔ))ି]൧ 

                                          + ఈమ

ଵା ൣషೖమ൫ ೣషംమ൯൧ , ࣂ = ,ଵߙ) ,ߚ ݇ଵ, ,ଶߙ ݇ଶ, ଶߛ , ܿ,  (8)  .׳(ݎ
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The second proposed curve is called the modified double Burr Type XII–
logistic sigmoidal growth curve. It can be obtained as follows: 

ெ݂(ݔ , (ࣂ = ߚൣ + ଵߙ) − 1 ](ߚ − (1 + (݇ଵݔ))ି]൧ 

                                           + ఈమିఈభ
ଵା[షೖమ( ೣషംమ)] , ࣂ = ,ଵߙ) ,ߚ ݇ଵ, ,ଶߙ ݇ଶ , ,ଶߛ ܿ,  (9)    .׳(ݎ

Consequently, the two proposed models of double sigmoidal growth 
are given based on (8) and (9) respectively as follows: 

The double Burr Type XII–logistic sigmoid growth model: 

()ݕ     = ݂ ,ݔ) ߝ+(ࣂ , ࣂ = ,ଵߙ) ,ߚ ݇ଵ, ,ଶߙ ݇ଶ, ,ଶߛ ܿ,  ׳(ݎ

                 = ߚൣ + ଵߙ) − 1 ](ߚ − (1 + (݇ଵݔ))ି]൧ + ఈమ

ଵା ൣషೖమ൫ ೣషംమ൯൧ ߝ+ .  (10) 

The modified double Burr Type XII–logistic sigmoid growth model:                 

(ெ)ݕ = ெ݂(ݔ, ,ߝ+(ࣂ ࣂ = ,ଵߙ) ,ߚ ݇ଵ, ,ଶߙ ݇ଶ, ଶߛ , ܿ,  ׳(ݎ

        = ߚൣ + ଵߙ) − 1 ](ߚ − (1 + (݇ଵݔ))ି]൧ + ఈమିఈభ
ଵା[షೖమ( ೣషംమ)] ߝ+ .    (11) 

3. Estimation of the parameters  

In this section, the parameters of the double logistic, modified double 
logistic, double Burr Type XII–logistic, and modified double Burr Type 
XII–logistic sigmoid growth models are estimated by the NLE and ML 
methods. 

3.1 Non-linear least squares estimation 

Suppose that ࣂ is the vector of  unknown parameters to be estimated 
in the proposed models by the NLS method, it is required to minimize 
the squared residuals: 

ୗࣂ                                  = arg min ∑ ݕ] − ,ݔ)݂ ଶ୬[(ࣂ
୧ୀଵ .                 (12) 

The first order condition is  

                           ∑ ݕ] − ,ݔ)݂ [(ࣂ డ(௫,ࣂ)
డఏೕ

= 0
ୀଵ  , ݆ = 1,2, … ,  (13)         .

For the double logistic model as in (6), the NLS estimator minimizes: 
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ୗࣂ = arg min ∑ ݕ] − ݂(ݔ, ,ଶ[(ࣂ ࣂ = ,ଵߙ) ݇ଵ, ,ଵߛ ,ଶߙ ݇ଶ, ୬.׳(ଶߛ
୧ୀଵ     (14) 

Then, the derivatives of ݂ ,ݔ)  with respect to the parameters are (ࣂ
given by 

                                  డವಽ(௫,ࣂ)
డఈభ

= ଵ
ଵା[షೖభ( ೣషംభ)] ,                                  (15) 

           డವಽ(௫,ࣂ)
డభ

= ݔ )ଵߙ − ଵ)൫1ߛ + ݁[ିభ( ௫ିఊభ)]൯ିଶ
݁[ିభ( ௫ିఊభ)],    (16) 

                 డವಽ(௫,ࣂ)
డఊభ

= ଵ݇ଵ൫1ߙ− + ݁[ିభ( ௫ିఊభ)]൯ିଶ
݁[ିభ( ௫ିఊభ)],        (17)   

                                   డವಽ(௫,ࣂ)
డఈమ

= ଵ
ଵା[షೖమ( ೣషംమ)] ,                                  (18) 

        డವಽ(௫,ࣂ)
డమ

= ݔ )ଶߙ − ଶ)൫1ߛ + ݁[ିమ( ௫ିఊమ)]൯ିଶ
  ݁[ିమ( ௫ିఊమ)],      (19) 

              డವಽ(௫,ࣂ)
డఊమ

= ଶ݇ଶ൫1ߙ− + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)] .          (20) 

By using R programming, the Levenberg-Marquardt (L-M) method is 
implemented to obtain the solution of (15)-(20) numerically. 

Also, for the modified double logistic model as in (7), the NLS 
estimator minimizes: 

ୗࣂ     = arg min ∑ ݕ] − ெ݂(ݔ, ,ଶ[(ࣂ ࣂ = ,ଵߙ) ݇ଵ, ,ଵߛ ,ଶߙ ݇ଶ, ୬׳(ଶߛ
୧ୀଵ . (21) 

Then, the derivatives of ெ݂ ,ݔ)  with respect to the parameters are (ࣂ
given by 

                  డಾವಽ(௫,ࣂ)
డఈభ

= ቂ ଵ
ଵା[షೖభ( ೣషംభ)] − ଵ

ଵା[షೖమ( ೣషംమ)]ቃ ,                    (22) 

        డಾವಽ(௫,ࣂ)
డభ

= ݔ )ଵߙ − ଵ)൫1ߛ + ݁[ିభ( ௫ିఊభ)]൯ିଶ
݁[ିభ( ௫ିఊభ)],      (23) 

            డಾವಽ(௫,ࣂ)
డఊభ

= ଵ݇ଵ൫1ߙ− + ݁[ିభ( ௫ିఊభ)]൯ିଶ
݁[ିభ( ௫ିఊభ)],           (24) 

                            డಾವಽ(௫,ࣂ)
డఈమ

= ଵ
ଵା[షೖమ( ೣషംమ)] ,                                       (25) 
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    డಾವಽ(௫,ࣂ)
డమ

= ଶߙ) − ݔ )(ଵߙ − ଶ)൫1ߛ + ݁[ିమ( ௫ିఊమ)]൯
ିଶ

  ݁[ିమ( ௫ିఊమ)],  (26) 

       డಾವಽ(௫,ࣂ)
డఊమ

= ଶߙ)− − ଵ)݇ଶ൫1ߙ + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)] .   (27)       

The solution of (22)-(27) can be obtained numerically by using the L-M 
iterative method. 

For the double Burr Type XII–logistic sigmoid growth model as 
defined in (10), the NLS estimator minimizes: 

ୗࣂ    = arg min ∑ ݕ] − ݂(ݔ , ,ଶ[(ࣂ ࣂ = ,ଵߙ) ,ߚ ݇ଵ , ,ଶߙ ݇ଶ , ଶߛ , ܿ, ୬׳(ݎ
୧ୀଵ . (28) 

Then, the derivatives of ݂ ,ݔ)  with respect to the parameters are (ࣂ
given as follows: 

                             డವಳಽ(௫,ࣂ)
డఉ

= (1 + (݇ଵݔ))ି ,                                  (29) 

                            డವಳಽ(௫,ࣂ)
డఈభ

= (1 − (1 + (݇ଵݔ))ି) ,                        (30) 

              డವಳಽ(௫,ࣂ)
డభ

= ݔ ܿ ݎ 
݇ଵ

ିଵ(ߙଵ − 1)(ߚ + (݇ଵݔ))ିିଵ,          (31) 

                           డವಳಽ(௫,ࣂ)
డఈమ

= ଵ
ଵା[షೖమ( ೣషംమ)]  ,                                       (32) 

        డವಳಽ(௫,ࣂ)
డమ

= ଶ൫1ߙ + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)]( ݔ −   ଶ),      (33)ߛ

               డವಳಽ(௫,ࣂ)
డఊమ

= −݇ଶߙଶ൫1 + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)],        (34) 

            డವಳಽ(௫,ࣂ)
డ

= ଵߙ) − 1)(ߚ + (݇ଵݔ))ି ݈݊(1 + (݇ଵݔ)),          (35)      

         డವಳಽ(௫,ࣂ)
డ

= ଵߙ) ݎ − 1)(ߚ + (݇ଵݔ))ିିଵ(݇ଵݔ) ݈݊(݇ଵݔ).      (36)    

The solution of (29)-(36) can be obtained numerically by using the L-M 
iterative method. 

For the modified double Burr Type XII–logistic sigmoid growth 
model as defined in (11), the NLS estimator minimizes: 
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ୗࣂ = arg min ∑ ݕ] − ெ݂(ݔ , ,ଶ[(ࣂ ࣂ = ,ଵߙ) ,ߚ ݇ଵ , ,ଶߙ ݇ଶ, ଶߛ , ܿ, ୬׳(ݎ
୧ୀଵ .  (37) 

Then, the derivatives of  ெ݂(ݔ,  with respect to the parameters are (ࣂ
given as follows: 

                              డಾವಳಽ(௫,ࣂ)
డఉ

= (1 + (݇ଵݔ))ି ,                               (38) 

            డಾವಳಽ(௫,ࣂ)
డఈభ

= (1 − (1 + (݇ଵݔ))ି)  − ଵ
ଵା[షೖమ( ೣషംమ)]  ,          (39) 

           డಾವಳಽ(௫,ࣂ)
డభ

= ݔ ܿ ݎ 
݇ଵ

ିଵ(ߙଵ − 1)(ߚ + (݇ଵݔ))ିିଵ,           (40) 

                             డಾವಳಽ(௫,ࣂ)
డఈమ

= ଵ
ଵା[షೖమ( ೣషംమ)] ,                                    (41) 

 డಾವಳಽ(௫,ࣂ)
డమ

= ଶߙ) − ଵ)൫1ߙ + ݁[ିమ( ௫ିఊమ)]൯
ିଶ

݁[ିమ( ௫ିఊమ)]( ݔ −  ଶ),       (42)ߛ

  డಾವಳಽ(௫,ࣂ)
డఊమ

= −݇ଶ(ߙଶ − ଵ)൫1ߙ + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)],       (43)  

       డಾವಳಽ(௫,ࣂ)
డ

= ଵߙ) − 1)(ߚ + (݇ଵݔ))ି ݈݊(1 + (݇ଵݔ)),            (44) 

      డಾವಳಽ(௫,ࣂ)
డ

= ଵߙ) ݎ − 1)(ߚ + (݇ଵݔ))ିିଵ(݇ଵݔ) ݈݊(݇ଵݔ).       (45)    

Then, using the L-M iterative method, the solution of (38)-(44) can be 
obtained numerically. 

3.2 Maximum likelihood estimation 

The maximum likelihood (ML) estimation for the parameters of the 
double logistic, modified double logistic, double Burr Type XII–logistic, 
and modified double Burr Type XII–logistic sigmoid growth models can 
be obtained as follows: 

For the double logistic sigmoid model as in (6), consider ࢟ =
,ଵݕ) … , ,ࣂ|ݕ)݂ ,)ᇱ be ݊ independent random variables with pdfݕ ఌߪ

ଶ) 
depending on a vector-valued parameter (ࣂ) and the variance of error, ߪఌ

ଶ. 
Also, the ߝ .݅ are assumed to be ݏ׳ ݅. ݀ with ܰ(0,  ଶ), then the likelihoodߪ
function is 
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ܮ        = ,ࣂ|࢟)݂ ఌߪ
ଶ) = ఌߪߨ2)

ଶ)ି
మ ݔ݁  ቂ− ଵ

ଶ
∑ ቀ(௬ି[ವಽ(௫,ࣂ)])మ

ఙഄ
మ ቁ

ୀଵ ቃ.      (46) 

The ML estimator of the parameters can be obtained by maximizing 
the logarithm of the likelihood function (46) denoted by ݈(ࣂ, ఌߪ

ଶ;  (࢟ 
which can be written in the form: 

,ࣂ)݈               ఌߪ
ଶ; (࢟  ∝  − 

ଶ
log(ߪఌ

ଶ) − ଵ
ଶ

∑ ቀ(௬ି[ವಽ(௫,ࣂ)])మ

ఙഄ
మ ቁ

ୀଵ .           (47)   

The first partial derivatives of (47) with respect to the parameters are: 

                     �డ൫ࣂ,ఙഄ
మ; ࢟൯

డࣂ
ቚ

ࣂୀࣂ
= 0, ࣂ = ,ଵߙ) ݇ଵ, ,ଵߛ ,ଶߙ ݇ଶ,  (48)                 ,׳(ଶߛ

where: 

            డ൫ࣂ,ఙഄ
మ; ࢟൯

డఈభ
= − ଵ

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ, ([(ࣂ

ୀଵ
ଵ

ଵା[షೖభ( ೣషംభ)] ,           (49) 

 డ൫ࣂ,ఙഄ
మ; ࢟൯

డభ
= − ఈభ

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ , ([(ࣂ

ୀଵ ݔ ) − ଵ)൫1ߛ + ݁[ିభ( ௫ିఊభ)]൯
ିଶ

݁[ିభ( ௫ିఊభ)] ,  

                                                                                                               (50) 

 డ(ࣂ,ఙഄ
మ; ࢟)

డఊభ
= − ఈభభ

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ , ([(ࣂ

ୀଵ ൫1 + ݁[ିభ( ௫ିఊభ)]൯ିଶ݁[ିభ( ௫ିఊభ)], (51) 

         డ൫ࣂ,ఙഄ
మ; ࢟൯

డఈమ
= − ଵ

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ, ([(ࣂ

ୀଵ  ଵ
ଵା[షೖమ( ೣషംమ)] ,             (52) 

డ൫ࣂ,ఙഄ
మ; ࢟൯

డమ
= − ఈమ

ఙഄ
మ ∑ ݕ) − [ ݂ ݔ) , ([(ࣂ

ୀଵ ݔ ) − ଶ) ൫1ߛ + ݁[ିమ( ௫ିఊమ)]൯
ିଶ

 ݁[ିమ( ௫ିఊమ)],              

                                                                                                               (53) 

 డ(ࣂ,ఙഄ
మ; ࢟)

డఊమ
= − ఈమమ

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ , ൫1([(ࣂ + ݁[ିమ( ௫ିఊమ)]൯ିଶ݁[ିమ( ௫ିఊమ)],

ୀଵ  (54) 

and  

                డ൫ࣂ,ఙഄ
మ; ࢟൯

డఙഄ
మ = − 

ଶఙഄ
మ + ଵ

ଶఙഄ
ర ∑ ݕ) − [ ݂(ݔ, ଶ([(ࣂ

ୀଵ .                 (55) 
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The ML estimators are obtained by setting (49) - (55) equal to zero. The 
resulting system of non-linear equations can be solved numerically using 
Nelder–Mead maximization method. 

From (7) as the modified double logistic sigmoid model defined, the 
ߝ .݅ are ݏ׳ ݅. ݀. ܰ(0,  ଶ), then, the likelihood function is given byߪ

ܮ = ,ࣂ|࢟)݂ ఌߪ
ଶ) = ఌߪߨ2)

ଶ)ି/ଶ ݁ݔ ቂ− ଵ
ଶ

∑ ቀ(௬ି[ಾವಽ(௫,ࣂ)])మ

ఙഄ
మ ቁ

ୀଵ ቃ.       (56)                                                                                                                            

The log-likelihood function is  

,ࣂ)݈           ఌߪ
ଶ; (࢟  ∝  − 

ଶ
log(ߪఌ

ଶ) − ଵ
ଶ

∑ ቀ(௬ି[ಾವಽ(௫,ࣂ)])మ

ఙഄ
మ ቁ

ୀଵ .             (57)   

The ML estimator of ࣂ can be obtained by solving the following 
equation: 

                        �డ൫ࣂ,ఙഄ
మ; ࢟൯

డࣂ
ቚ

ࣂୀࣂ
= 0, ࣂ = ,ଵߙ) ݇ଵ, ,ଵߛ ,ଶߙ ݇ଶ,  (58)              ,׳(ଶߛ

where: 

 డ(ࣂ,ఙഄ
మ; ࢟)

డఈభ
= − ଵ

ఙഄ
మ ∑ ݕ) − [ ெ݂(ݔ , ([(ࣂ ቂ ଵ

ଵା[షೖభ( ೣషംభ)] − ଵ
ଵା[షೖమ( ೣషംమ)]ቃ

ୀଵ ,      (59)     

డ൫ࣂ,ఙഄ
మ; ࢟൯

డభ
= − ఈభ

ఙഄ
మ ∑ ݕ) − [ ெ݂(ݔ , ([(ࣂ

ୀଵ ݔ ) − ଵ)൫1ߛ + ݁[ିభ( ௫ିఊభ)]൯
ିଶ

݁[ିభ( ௫ିఊభ)],  

                                                                                                                                                     (60) 
డ(ࣂ,ఙഄ

మ; ࢟)
డఊభ

= − ఈభభ
ఙഄ

మ ∑ ݕ) − [ ெ݂(ݔ , ([(ࣂ
ୀଵ ൫1 + ݁[ିభ( ௫ିఊభ)]൯

ିଶ
݁[ିభ( ௫ିఊభ)],(61) 

డ൫ࣂ,ఙഄ
మ; ࢟൯

డఈమ
= − ଵ

ఙഄ
మ ∑ ݕ) − [ ெ݂(ݔ, ([(ࣂ

ୀଵ
ଵ

ଵା[షೖమ( ೣషംమ)] ,                    (62) 

 
డ൫ࣂ,ఙഄ

మ; ࢟൯
డమ

= − (ఈమିఈభ)
ఙഄ

మ ∑ ݕ) − [ ெ݂(ݔ , ([(ࣂ
ୀଵ  

                      × ݔ ) − ଶ)൫1ߛ + ݁[ିమ( ௫ିఊమ)]൯ିଶ
  ݁[ିమ( ௫ିఊమ)],                     (63) 

 డ൫ࣂ,ఙഄ
మ; ࢟൯

డఊమ
= − (ఈమିఈభ)మ

ఙഄ
మ ∑ ݕ) − [ ெ݂(ݔ, ([(ࣂ

ୀଵ  

                     × ൫1 + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)] ,                              (64) 
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and 

             డ൫ࣂ,ఙഄ
మ; ࢟൯

డఙഄ
మ = − 

ଶఙഄ
మ + ଵ

ଶఙഄ
ర ∑ ݕ) − [ ெ݂(ݔ, ଶ([(ࣂ

ୀଵ .                 (65) 

The ML estimators are obtained by setting (59) - (65) equal to zero. The 
resulting system of non-linear equations can be solved numerically using 
Nelder–Mead maximization method.   

For the first proposed model, double Burr Type XII–logistic sigmoid 
growth model as defined in (10), the ߝ .݅ are assumed to be ݏ׳ ݅. ݀ with 
ܰ(0,         :ଶ), then, the likelihood function is given as followsߪ

ܮ       = ,ࣂ|࢟)݂ ఌߪ
ଶ) = ఌߪߨ2) 

ଶ)ି/ଶ ݁ݔ − ଵ
ଶ

∑ ൬൫௬ିವಳಽ(௫,ࣂ)൯మ

ఙഄ
మ ൰

ୀଵ ൨.  (66)                                                                                                                            

The log-likelihood function is  

,ࣂ)݈                 ఌߪ
ଶ; (࢟  ∝  − 

ଶ
lo g(ߪఌ

ଶ) − ଵ
ଶ

∑ ൬൫௬ିವಳಽ(௫,ࣂ)൯మ

ఙഄ
మ ൰

ୀଵ .         (67)   

The ML estimator of ࣂ can be obtained by solving the following 
equation: 

                      �డ൫ࣂ,ఙഄ
మ; ࢟൯

డࣂ
ቚ

ࣂୀࣂ
= 0, ࣂ = ,ଵߙ) ݇ଵ, ,ߚ ,ଶߙ ݇ଶ, ,ଶߛ ܿ,  (68)         ,׳(ݎ

where: 

డ൫ࣂ,ఙഄ
మ; ࢟൯

డఈభ
= − ଵ

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ, ([(ࣂ

ୀଵ (1 − (1 + (݇ଵݔ))ି)  ,     (69) 

డ൫ࣂ,ఙഄ
మ; ࢟൯

డఉ
= − ଵ

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ, ([(ࣂ

ୀଵ (1 + (݇ଵݔ))ି ,                 (70) 

డ(ࣂ,ఙഄ
మ; ࢟)

డభ
= ݔ ܿ ݎ− 

݇ଵ
ିଵ (ఈభିఉభ)

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ , ([(ࣂ

ୀଵ (1 + (݇ଵݔ))ିିଵ,(71) 

డ൫ࣂ,ఙഄ
మ; ࢟൯

డఈమ
= − ଵ

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ, ([(ࣂ

ୀଵ
ଵ

ଵାൣషೖమ൫ ೣషംమ൯൧ ,                     (72) 

 డ൫ࣂ,ఙഄ
మ; ࢟൯

డమ
= − ఈమ

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ, ([(ࣂ

ୀଵ  

                     × ൫1 + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)]( ݔ −  ଶ),               (73)ߛ
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 డ൫ࣂ,ఙഄ
మ; ࢟൯

డఊమ
= మఈమ

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ, ([(ࣂ

ୀଵ  

                    × ൫1 + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)],                                (74) 

 డ൫ࣂ,ఙഄ
మ; ࢟൯

డ
= − (ఈభିఉ)

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ, ([(ࣂ

ୀଵ  

                     × (1 + (݇ଵݔ))ି ݈݊(1 + (݇ଵݔ)),                                 (75) 

 డ൫ࣂ,ఙഄ
మ; ࢟൯

డ
= −  (ఈభିఉ)

ఙഄ
మ ∑ ݕ) − [ ݂(ݔ, ([(ࣂ

ୀଵ  

                     × (1 + (݇ଵݔ))ିିଵ(݇ଵݔ) ݈݊(݇ଵݔ).                             (76)  

and  

            డ൫ࣂ,ఙഄ
మ; ࢟൯

డఙഄ
మ = − 

ଶఙഄ
మ + ଵ

ଶఙഄ
ర ∑ ݕ) − [ ݂(ݔ, ଶ([(ࣂ

ୀଵ .                   (77) 

The ML estimators are obtained by setting (69) - (77) equal to zero. The 
resulting system of non-linear equations can be solved numerically using 
Nelder–Mead maximization method. 

For the second new proposed model, modified double Burr Type 
XII–logistic sigmoid growth model as defined in (11), the ߝ  are ݏ׳
assumed to be ݅. ݅. ݀ with ܰ(0,  ଶ), then, the likelihood function is asߪ
follows:        

ܮ   = ,ࣂ|࢟)݂ ఌߪ
ଶ) = ఌߪߨ2) 

ଶ)ି/ଶ ݁ݔ − ଵ
ଶ

∑ ൬൫௬ିಾವಳಽ(௫,ࣂ)൯మ

ఙഄ
మ ൰

ୀଵ ൨.    (78)                                                                                                                            

The logarithm of the likelihood function (78) is denoted by ݈(ࣂ, ఌߪ
ଶ;  (࢟ 

which can be written as follows: 

,ࣂ)݈                 ఌߪ
ଶ; (࢟  ∝  − 

ଶ
lo g(ߪఌ

ଶ) − ଵ
ଶ

∑ ൬൫௬ିಾವಳಽ(௫,ࣂ)൯మ

ఙഄ
మ ൰

ୀଵ .      (79)   

The ML estimator of ࣂ can be obtained by solving the following 
equation: 

                        �డ൫ࣂ,ఙഄ
మ; ࢟൯

డࣂ
ቚ

ࣂୀࣂ
= 0, ࣂ = ,ଵߙ) ݇ଵߚ, ,ଶߙ ݇ଶ, ,ଶߛ ܿ,  (80)          ,׳(ݎ
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where: 

 డ൫ࣂ,ఙഄ
మ; ࢟൯

డఈభ
= − ଵ

ఙഄ
మ ∑ ݕ) − [ ெ݂(ݔ, ([(ࣂ

ୀଵ  

                     × ቂ(1 − (1 + (݇ଵݔ))ି)  − ଵ
ଵା[షೖమ( ೣషംమ)]ቃ ,                   (81) 

             డ൫ࣂ,ఙഄ
మ; ࢟൯

డఉ
= − ଵ

ఙഄ
మ ∑ ݕ) − [ ெ݂(ݔ, ([(ࣂ

ୀଵ (1 + (݇ଵݔ))ି , (82) 

 డ൫ࣂ,ఙഄ
మ; ࢟൯

డభ
= ݔ ܿ ݎ−

݇ଵ
ିଵ (ఈభିఉ)

ఙഄ
మ ∑ ݕ) − [ ெ݂(ݔ, ([(ࣂ

ୀଵ  

                     × (1 + (݇ଵݔ))ିିଵ,                                                        (83) 

      డ൫ࣂ,ఙഄ
మ; ࢟൯

డఈమ
= − ଵ

ఙഄ
మ ∑ ݕ) − [ ெ݂(ݔ, ([(ࣂ

ୀଵ
ଵ

ଵାൣషೖమ൫ ೣషംమ൯൧ ,            (84) 

 డ൫ࣂ,ఙഄ
మ; ࢟൯

డమ
= − (ఈమିఈభ)

ఙഄ
మ ∑ ݕ) − [ ெ݂ ,ݔ) ([(ࣂ

ୀଵ  

                     × ൫1 + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)]( ݔ −  ଶ),               (85)ߛ

 డ൫ࣂ,ఙഄ
మ; ࢟൯

డఊమ
= మ(ఈమିఈభ)

ఙഄ
మ ∑ ݕ) − [ ெ݂(ݔ, ([(ࣂ

ୀଵ  

                    × ൫1 + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)],                                (86) 

 డ൫ࣂ,ఙഄ
మ; ࢟൯

డ
= − (ఈభିఉ)

ఙഄ
మ ∑ ݕ) − [ ெ݂ ,ݔ) ([(ࣂ

ୀଵ  

                     × (1 + (݇ଵݔ))ି ݈݊(1 + (݇ଵݔ)),                                 (87) 

 డ൫ࣂ,ఙഄ
మ; ࢟൯

డ
= −  (ఈభିఉ)

ఙഄ
మ ∑ ݕ) − [ ெ݂(ݔ, ([(ࣂ

ୀଵ  

                    × (1 + (݇ଵݔ))ିିଵ(݇ଵݔ) ݈݊(݇ଵݔ),                              (88) 

and 

                    డ൫ࣂ,ఙഄ
మ; ࢟൯

డఙഄ
మ = − 

ଶఙഄ
మ + ଵ

ଶఙഄ
ర ∑ ݕ) − [ ெ݂(ݔ, ଶ([(ࣂ

ୀଵ .        (89) 
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The ML estimators are obtained by setting (81) - (89) equal to zero. The 
resulting system of non-linear equations can be solved numerically using 
Nelder–Mead maximization method. 

On the other hand, the initial values of the parameters are needed to 
obtain the estimators when the iterative methods are used. Then, the 
starting values of parameters are determined as follows: 

The starting values of ࢻ and ࢻ: The parameters ߙଵand ߙଶ of ߙଵand 
 ଶ are specified as the maximum value of the dependent variable in twoߙ
stages of the data.  

The starting values of  and  : The parameters ݇ଵand ݇ଶ of ݇ଵand 
݇ଶ are defined as the constant rate at which the response variable 
approaches its maximum possible value.  

The starting values of ࢽ and ࢽ: The parameters ߛଵand ߛଶ are 
defined as the point of inflection values of the two curves of an 
independent variable, or it may be the values of the independent variable 
corresponding to  ఈబభ

ଶ
 or ఈబమ

ଶ
 values of the dependent variable. 

The starting value of ࢼ: The starting value for ߚ of ߚ was specified by 
evaluating the model at the start of the growth, and the assumption that ߚ 
is the minimum of the dependent variable in the data. 

The inflection points of double curves  

In the nonlinear sigmoid model with inflection points adjusted by the 
sum of functions, the points are determined in the functions that 
correspond to each growth phase. Moreover, by following Mischan et al. 
(2015), the inflection points for the proposed curves of double sigmoidal 
growth, the double logistic, modified double logistic, double Burr Type 
XII- logistic and modified double Burr Type XII -logistic are derived as 
follows: 

The double logistic curve: 

From (4), let ݂
(ଵ)(ݔ, (ࣂ = ఈభ

ଵାൣషೖభ൫ ೣషംభ൯൧ and ݂
(ଶ)(ݔ, (ࣂ =

ఈమ

ଵାൣషೖమ൫ ೣషംమ൯൧.  
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For the inflection point of the first curve, the first and second 
derivatives of ݂

(ଵ)(ݔ, denoted as ݂ (ࣂ
(ଵ)ᇲ

,ݔ) and ݂ (ࣂ
(ଵ)ᇲᇲ

,ݔ)  which (ࣂ
are given respectively by: 

        ݂
(ଵ)ᇲ

,ݔ) (ࣂ = ଵ݇ଵ൫1ߙ + ݁[ିభ( ௫ିఊభ)]൯ିଶ
݁[ିభ( ௫ିఊభ)] ,               (90)  

and  

      ݂
(ଵ)ᇲᇲ

,ݔ) (ࣂ = ଵ݇ଵߙ
ଶ ൝

2൫1 + ݁[ିభ( ௫ିఊభ)]൯ିଷ
݁[ିଶభ( ௫ିఊభ)]

−൫1 + ݁[ିభ( ௫ିఊభ)]൯ିଶ
݁[ିభ( ௫ିఊభ)]

ൡ.         (91) 

When ݂
(ଵ)ᇲᇲ

,ݔ) (ࣂ = 0, then, [2 ൫1 + ݁[ିభ( ௫ିఊభ)]൯ିଵ
݁[ିଶభ( ௫ିఊభ)] −

1] = 0. Hence,  ݔ =   in the first curve, theݔ ଵ. By substituting the newߛ
new value of ߙ୫ୟ୶ (ଵ) = (ଵ

ଶ
 .ଵߙ (

Also, the inflection point in the second curve can be determined as 
follows: 

The first and second derivatives of ݂
(ଶ)(ݔ, denoted as ݂ (ࣂ

(ଶ)ᇲ
,ݔ)  and (ࣂ

݂
(ଶ)ᇲᇲ

,ݔ)  :which are given as follows (ࣂ

                ݂
(ଶ)ᇲ

,ݔ) (ࣂ = ଶ݇ଶ൫1ߙ + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)] ,      (92) 

and 

           ݂
(ଶ)ᇲᇲ

,ݔ) (ࣂ = ଶ݇ଶߙ
ଶ ൝

2൫1 + ݁[ିమ( ௫ିఊమ)]൯ିଷ
݁[ିଶమ( ௫ିఊమ)]

−൫1 + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)]

ൡ.   (93) 

When ݂
(ଶ)ᇲᇲ

,ݔ) (ࣂ = 0, then, [2 ൫1 + ݁[ିమ( ௫ିఊమ)]൯ିଵ
݁[ିଶమ( ௫ିఊమ)] −

1] = 0.  Hence, ݔ =  , in the second curveݔ ଶ. By substituting the newߛ
the new value of ߙ୫ୟ୶ (ଶ) = (ଵ

ଶ
 .ଶߙ  (

The modified double logistic curve:  

From (5), let ெ݂
(ଵ) ,ݔ) (ࣂ = ఈభ

ଵା[షೖభ( ೣషംభ)] and ெ݂
(ଶ) ,ݔ) (ࣂ =

ఈమିఈభ
ଵା[షೖమ( ೣషംమ)].  
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For the inflection point of the first curve, the first and second 
derivatives of ெ݂

(ଵ) ,ݔ) denoted as ெ݂ (ࣂ
(ଵ)ᇲ

,ݔ) and ெ݂ (ࣂ
(ଵ)ᇲᇲ

,ݔ)  which (ࣂ
are given in (93) and (94) respectively. When ெ݂

(ଵ)ᇲᇲ
,ݔ) (ࣂ  = 0, then, 

ݔ =    in the first curve, the new value ofݔ ଵ. By substituting the newߛ
୫ୟ୶ (ଵ)ߙ = (ଵ

ଶ
 .ଵߙ  (

Also, the inflection point in the second curve can be determined as 
follows: 
The first and second derivatives of ெ݂

(ଶ) ,ݔ) denoted as ெ݂ (ࣂ
(ଶ)ᇲ

,ݔ)  (ࣂ
and ெ݂

(ଶ)ᇲᇲ
,ݔ)  :which are given respectively by (ࣂ

          ெ݂
(ଶ)ᇲ

,ݔ) (ࣂ = ଶߙ) − ଵ)݇ଶ൫1ߙ + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)],  (94) 

and 

  ெ݂
(ଶ)ᇲᇲ

,ݔ) (ࣂ = ଶߙ) − ଵ)݇ଶߙ
ଶ ൝

2൫1 + ݁[ିమ( ௫ିఊమ)]൯ିଷ
݁[ିଶమ( ௫ିఊమ)]

−൫1 + ݁[ିమ( ௫ିఊమ)]൯ିଶ
݁[ିమ( ௫ିఊమ)]

ൡ. (95) 

When  ݂ெ
(ଶ)ᇲᇲ

,ݔ) (ࣂ  = 0, then, ݔ =   in theݔ ଶ. By substituting the newߛ
second curve, the new value of ߙ୫ୟ୶(ଶ) = (ଵ

ଶ
୫ୟ୶(ଶ)ߙand ൫  ,(ଶߙ) ( −

(୫ୟ୶(ଵ)ߙ = (ଵ
ଶ
ଶߙ) ( −  .(ଵߙ

The double Burr Type XII- logistic curve:  

From (8), let ݂
(ଵ) ,ݔ) (ࣂ = ߚൣ + ଵߙ) − 1 ](ߚ − (1 + (݇ଵݔ))ି]൧ 

and ݂
(ଶ) ,ݔ) (ࣂ = ఈమ

ଵାൣషೖమ൫ ೣషംమ൯൧. 

For the inflection point of the first curve, the first and second 
derivatives of ݂

(ଵ) ,ݔ) denoted as ݂ (ࣂ
(ଵ)ᇲ

,ݔ) and ݂ (ࣂ
(ଵ)ᇲᇲ

,ݔ)  which (ࣂ
are given respectively by 

                 ݂
(ଵ)ᇲ

,ݔ) (ࣂ = ଵ݇ ܿ ݎ
(ߙଵ − ݔ(ߚ

ିଵ(1 + (݇ଵݔ))ିିଵ,     (96) 

and 

݂
(ଵ)ᇲᇲ

ݔ) , (ࣂ = ଵ݇ܿ ݎ
(ߙଵ − (ߚ ቐ

ݎ−) − ݔ(1
ିଵ(ܿ ݇ଵ

ݔ
ିଵ)(1 + (݇ଵݔ))ିିଶ

+(ܿ − ݔ   (1
ିଶ(1 + (݇ଵݔ))ିିଵ

ቑ.  

                                                                                                                (97) 
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When ݂
(ଵ)ᇲᇲ

,ݔ) (ࣂ  = 0, then, (1 + (݇ଵݔ))ିିଵ = 0 . Hence, ݔ =
(ିଵ)భ/

భ
. By substituting the new ݔ in the first curve, the new value of  

୫ୟ୶ (ଵ)ߙ =   . ଵߙ

Also, the inflection point in the second curve can be determined as 
follows: 

The first and second derivatives of ݂
(ଶ) ,ݔ) denoted ݂ (ࣂ

(ଶ)ᇲ
,ݔ)  and(ࣂ

݂
(ଶ)ᇲᇲ

,ݔ)  .are given as in (94) and (95) respectively (ࣂ

When ݂
(ଶ)ᇲᇲ

,ݔ) (ࣂ  = 0, then, ݔ =   in theݔ ଶ. By substituting the newߛ
second curve,  the new value of ߙ୫ୟ୶(ଶ) = (ଵ

ଶ
 .ଶߙ (

The modified double Burr Type XII- logistic curve:  

From (9), let ெ݂
(ଵ) ,ݔ) (ࣂ = ߚൣ + ଵߙ) − 1 ](ߚ − (1 + (݇ଵݔ))ି]൧ 

and  ெ݂
(ଶ) ,ݔ) (ࣂ = (ఈమିఈభ)

ଵା[షೖమ( ೣషംమ)].  

For the inflection point of the first curve, the first and second 
derivatives of ெ݂

(ଵ) ,ݔ) denoted as ெ݂ (ࣂ
(ଵ)ᇲ

,ݔ) and ெ݂ (ࣂ
(ଵ)ᇲᇲ

,ݔ)  are (ࣂ
given as in (96) and (97) respectively. When ெ݂

(ଵ)ᇲᇲ
,ݔ) (ࣂ  = 0, then, the 

new value of ߙ୫ୟ୶ (ଵ) =  .ଵߙ

Also, for the inflection point in the second curve, the first and second 
derivatives of ெ݂

(ଶ) ,ݔ) denoted as ெ݂ (ࣂ
(ଶ)ᇲ

,ݔ) and ெ݂ (ࣂ
(ଶ)ᇲᇲ

,ݔ)  are (ࣂ
given as in (91) and (92) respectively. When ெ݂

(ଶ)ᇲᇲ
,ݔ) (ࣂ  = 0, then, 

ݔ =   in the second curve, the new value ofݔ ଶ. By substituting the newߛ
൫ߙ୫ୟ୶(ଶ) − ୫ୟ୶(ଵ)൯ߙ = (ଵ

ଶ
ଶߙ) ( −  .(ଵߙ

4. Simulation Study 
 
In this section, a Monte Carlo simulation is conducted to make a 

comparison between the performance of the proposed double sigmoid 
growth models: double Burr Type XII-logistic, and modified double Burr  
Type XII-logistic sigmoid growth models, against some the existing 
double sigmoid growth models as double logistic, and modified double 
logistic sigmoid growth models. The performance of the estimators of the 



18 
 

NLS and ML for the parameters ߠ , ݆ = 1,2, … ,  of these models can be 
evaluated using the relative absolute bias (RAB) and relative mean 
squared error (REMSE) as follows:   

                                        RAB൫ߠ൯ = หெ൫ఏೕ൯ିఏೕห
ఏೕ

 ,                              (98) 

                                        REMSE൫ߠ൯ = ெௌா൫ఏೕ൯
ఏೕ

  ,                                 (99) 

where ݊ܽ݁ܯ൫ߠ൯ = ଵ
ே

∑ ே(ߠ)
ୀଵ  , ܰ is the total number of replications, 

and ܧܵܯ൫ߠ൯ = ൯ߠ൫ݎܽݒ +  .൯ߠଶ൫ݏܾܽ݅

Also, the asymptotic normality of NLS and ML estimation can be 
used to compute the asymptotic 100 (1- ߱)% confidence intervals(A. C. I) 
for ߠ as follows: 
ߠ                                              ±  ܼ(ଵିഘ

మ  (100)                              , (ߠ)ܧܵ (

where ߱ is the significance level and ܵܧ(ߠ) is the standard error of ߠ. 

4.1 Simulation design   
The following steps are used to compute the NLS, and ML estimates, 

RAB, REMSE and A.C.I for the existing and the proposed double 
sigmoid growth models for different sample sizes ݊ =  200, 300, 400, 
and 600. The computation of the simulation study is developed using R 
program (version 3.6.3). Some functions in R Program such as 
minpack.lm, bbmle, stats4, and mle2 packages are used to compare the 
performance of different double sigmoid growth models estimates under 
the assumption of normal distribution of random errors.  

 
1. For the double Burr Type XII-logistic, and modified double Burr 

Type XII-logistic sigmoid growth models, generate ଵܺ ~Burr(ܿ,  ,(ݎ
where ܿ = 1.7, ݎ = 2.5, and ܺଶ ~݈(0,1)ܿ݅ݐݏ݅݃. 

2. For the double logistic and modified double logistic sigmoid growth 
models, generate ଵܺ ~݈(0,1)ܿ݅ݐݏ݅݃ and ܺଶ ~݈(0,1)ܿ݅ݐݏ݅݃. 

3. Obtain the explanatory variables ܺ using ଵܺ  and ܺଶ . 
4. Generate the values of error, ߝ from the standard normal distribution. 
5. Following Caglar et al. (2018), simulate intensity noise from uniform 

distribution and add noise of parameter equal to 0.03. 
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6. The initial values of the coefficients are chosen as ߙଵ = 5, ଵߚ  =
0.7, ݇ଵ = 5, ܿ = 1.7, ݎ = 2.5, ଶߙ = 6, ଵߛ = 2, ଶߛ = 5, and ݇ଶ = 5. 

7. Obtain the response variablesݕ using equations (6), (7), (10), and 
(11), and add the intensity noise equal of parameter. 

8. Obtain the NLS estimates by solving (14) for the double logistic 
sigmoid growth model, solving (21) for the modified double logistic 
sigmoid growth model, solving (28) for the double Burr Type XII- 
logistic sigmoid growth model, and solving (37) for the modified 
double Burr Type XII-logistic sigmoid growth model. 

9. Obtain the ML estimates by solving (48) for the double logistic 
sigmoid growth model, solving (58) for the modified double logistic 
sigmoid growth model, solving (68) for the double Burr Type XII- 
logistic sigmoid growth model, and solving (80) for the modified 
double Burr Type XII-logistic sigmoid growth model. 

10. Compute the RAB, REMSE and A. C. I for each estimate using (98), 
(99), and (100) respectively. 

11. Repeat the above steps for all double sigmoid models and all sample 
sizes 5000 times using R program.    

The results of the simulation study are summarized in Tables 1-16. 
These tables give the estimated, RAB, REMSE, and A.C.I for each 
estimate of the considered double sigmoid growth model. The plots of the 
fitted different double sigmoid growth models are shown in Figures 1-4. 

4.2 Simulation results 

The main results of the simulation study indicate that: By comparing 
the RAB and REMSE of the estimator in all models, the NLS estimation 
is appropriate than ML estimation which agrees with the theoretical 
results; in all cases, as n increases, the RAB, REMSE, and the length of 
A.C.I. decrease. Also, it can be found that the modified double Burr Type 
XII-logistic sigmoid growth model has the shortest confidence interval 
than other suggested and existing models by NLS, ML methods in the 
most sample sizes; and as shown in Figures 1, 2, 3, and 4, it is noticed 
that, the first and second inflection points are very close of the average 
estimate values to the inflection points for almost sample sizes in all 
models by NLS, ML methods. 
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Table 1: The average of the estimated parameter values, RAB, REMSE, and A.C.I 
of the double Burr Type XII-logistic sigmoid growth model when  =    and 
ࢻ = , ࢼ = . ૠ,  = , ࢉ = . ૠ, ࢘  = . , ࢻ = , ࢽ = , and  = . 

 
Table 2: The average of the estimated parameter values, RAB, REMSE, and A.C.I 

of the double Burr Type XII-logistic sigmoid growth model when  =    and 
ࢻ = , ࢼ = . ૠ,  = , ࢉ = . ૠ, ࢘  = . , ࢻ = , ࢽ = , and  = .  
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Table 3: The average of the estimated parameter values, RAB, REMSE, and A.C.I 
of the double Burr Type XII-logistic sigmoid growth model when  =    and 
ࢻ = , ࢼ = . ૠ,  = , ࢉ = . ૠ, ࢘  = . , ࢻ = , ࢽ = , and  = .  

 
Table 4: The average of the estimated parameter values, RAB, REMSE, and A.C.I 

of the double Burr Type XII-logistic sigmoid growth model when  =    and 
ࢻ = , ࢼ = . ૠ,  = , ࢉ = . ૠ, ࢘  = . , ࢻ = , ࢽ = , and  = .  

 

 



22 
 

Table 5: The average of the estimated parameter values, RAB, REMSE, and A.C.I 
of the modified double Burr Type XII-logistic sigmoid growth model when 

 =    and ࢻ = , ࢼ = . ૠ,  = , ࢉ = . ૠ, ࢘  = . , ࢻ = , ࢽ =
, and  = .  

 
Table 6: The average of the estimated parameter values, RAB, REMSE, and A.C.I 

of the modified double Burr Type XII-logistic sigmoid growth model when 
 =    and ࢻ = , ࢼ = . ૠ,  = , ࢉ = . ૠ, ࢘  = . , ࢻ = , ࢽ =

, and  = .  
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Table 7: The average of the estimated parameter values, RAB, REMSE, and A.C.I 
of the modified double Burr Type XII-logistic sigmoid growth model when 

 =   and ࢻ = , ࢼ = . ૠ,  = , ࢉ = . ૠ, ࢘  = . , ࢻ = , ࢽ =
, and  = .  

 
Table 8: The average of the estimated parameter values, RAB, REMSE, and A.C.I 

of the modified double Burr Type XII-logistic sigmoid growth model when 
 =   and ࢻ = , ࢼ = . ૠ,  = , ࢉ = . ૠ, ࢘  = . , ࢻ = , ࢽ =

, and  = .  
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Table 9: The average of the estimated parameter values, RAB, REMSE, and A.C.I 
of the double logistic sigmoid growth model when  =    and ࢻ = ,  =

, ࢽ = , ࢻ = ,  = ,  and ࢽ = . 

 
Table 10: The average of the estimated parameter values, RAB, REMSE, and A.C.I 

of the double logistic sigmoid growth model when  =    and ࢻ = ,  =
, ࢽ = , ࢻ = ,  = ,  and ࢽ = . 
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Table 11: The average of the estimated parameter values, RAB, REMSE, and A.C.I 
of the double logistic sigmoid growth model when  =    and ࢻ = ,  =

, ࢽ = , ࢻ = ,  = ,  and ࢽ = . 

 
Table 12: The average of the estimated parameter values, RAB, REMSE, and A.C.I 

of the double logistic sigmoid growth model when  =    and ࢻ = ,  =
, ࢽ = , ࢻ = ,  = ,  and ࢽ = . 
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Table 13: The average of the estimated parameter values, RAB, REMSE, and A.C.I 
of the modified double logistic sigmoid growth model when  =    and ࢻ = ,

 = , ࢽ = , ࢻ = ,  =  ,  and ࢽ = . 

 
Table 14: The average of the estimated parameter values, RAB, REMSE, and A.C.I 
of the modified double logistic sigmoid growth model when  =    and ࢻ = ,

 = , ࢽ = , ࢻ = ,  =  ,  and ࢽ = . 
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Table 15: The average of the estimated parameter values, RAB, REMSE, and A.C.I 
of the modified double logistic sigmoid growth model when  =    and ࢻ = ,

 = , ࢽ = , ࢻ = ,  =  ,  and ࢽ = . 

 
Table 16: The average of the estimated parameter values, RAB, REMSE, and A.C.I 
of the modified double logistic sigmoid growth model when  =    and ࢻ = ,

 = , ࢽ = , ࢻ = ,  =  ,  and ࢽ = . 
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Figure 1: Plots of the fitted double growth curves when ݊ = 200. 
 

 

Figure 2: Plots of the fitted double growth curves when ݊ = 300. 
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Figure 3: Plots of the fitted double growth curves when ݊ = 400. 

 

 

Figure 4: Plots of the fitted double growth curves when ݊ = 600. 
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5. Application 

In this section, the COVID-19 data set is analyzed to demonstrate 
how the proposed models can be used in practice. The data set on the 
number of daily confirmed new COVID-19 cases in Egypt from March 
15, 2020 to May 31, 2020 in the first stage, and the number of daily 
confirmed new COVID-19 cases in Egypt from June 1, 2020 to 
September 8, 2020 in the second stage, which are taken from ministry of 
health and population in Egypt (2020) are used. The data was recorded 
every day for a period of 178 days (106 days in the first stage, and 72 
days in the second stage) as follows: 

16 40 30 14 46 29 9 33 39 36 
54 39 41 40 33 47 54 69 86 120 
85 103 149 128 110 139 95 145 126 125 

160 155 168 171 188 112 189 157 169 232 
201 227 215 248 260 226 269 358 298 272 
348 388 387 393 495 488 436 346 347 338 
398 399 491 510 535 720 745 774 783 727 
752 702 789 910 1127 1289 1367 1536 1399 1152 
1079 1152 1348 1497 1467 1365 1385 1455 1442 1577 
1677 1618 1691 1567 1363 1218 1774 1547 1475 1576 
1332 1420 1569 1625 1168 1265 1566 1557 1503 1458 
1412 1324 1218 969 1057 1025 950 981 923 912 
931 929 913 928 703 698 603 627 676 667 
668 659 511 479 420 465 409 401 321 238 
167 157 112 123 131 141 167 178 174 168 
129 145 112 116 139 115 163 161 111 123 
89 103 138 141 206 237 223 212 230 212 

176 165 145 157 130 151 178 187   
 
These data are refined by using the inverted variance transformation. 

The graphical presentation of the relationship between the number of 
confirmed new cases of COVID-19 as the response variable, and the days 
as the explanatory variable is shown in Figure 5. The data is characterized 
by two consecutive stages, one with an increasing stage followed by a 
decreasing stage. 
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Figure 5: Description of the number of confirmed new cases of COVID-
19 over time. 

 
The starting initial values of some initial values are calculated as 

ܽଵ = ଵߚ ,0.00639 = 0.00003, ܽଶ = ଵߛ ,0.00564 = ଶߛ ,81 = 135, 
and some initial values are chosen as ܿ = ݎ ,0.2 = 1.9, ݇ଵ = 0.009, 
and ݇ଶ = 0.013. The plots of growth curves, double Burr Type XII-
logistic, modified double Burr Type XII-logistic, double logistic and 
modified double logistic using their inflection points are displayed in 
Figure 6, and the fitted growth curves of each model for the data set are 
displayed in Figure 7. Also, for comparing between models the parameter 
estimates, approximate standard errors (ASE) and A.C.I at %95 of 
parameters for each model are summarized in Tables 17-20.  

 

Figure 6: Plots of the growth curves with their respective inflection 
points. 
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Figure7: Plots of the fitted growth curves. 

Table 17: Parameter estimates, ASE, and A.C.I of the parameters for the 
double Burr Type XII-logistic growth model. 
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Table 18: Parameter estimates, ASE, and A.C.I of the parameters for the 
modified double Burr Type XII-logistic growth model. 

 

Table 19: Parameter estimates, ASE, and A.C.I of the parameters for the 
double logistic growth model. 
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Table 20: Parameter estimates, ASE, and A.C.I of the parameters for the 
modified double logistic growth model. 

 

From Tables 17-20, by comparing the NLS, ML methods for each 
model, the results indicate that the ASE and A.C.I in the NLS method are 
better than the ML method. 

For choosing the best model in describing the data, the following 
criteria are used: the coefficient of determination, ܴଶ, mean squared error 
(MSE), root mean squared error (RMSE) and model efficiency (ME) are 
shown in Table 21 according to the following formulas: 

                             ܴଶ = 1 − ∑ (௬ି௬ො)మ
సభ

∑ (௬ି௬ො)మ
సభ ା∑ (௬ොି௬ത)మ

సభ
 ,                          (101)   

                            MSE = ∑ (௬ି௬ො)మ
సభ


 ,                                                  (102)  

                            RMSE = √MSE ,                                                       (103)  

                             ME = 1 − ∑ (௬ି௬ො)మ
సభ

∑ (௬ି௬ത)మ
సభ

 ,                                            (104) 

where ݊ is the sample size, ݕ  ,  ො are the observed and predicted valuesݕ
respectively, and ݕ ഥ  is the mean of observed values. 
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Table 21: The ܀, ,۳܁ۻ  for different double sigmoid growth ۳ۻ and ,۳܁ۻ܀

models. 

 

From Table 21, it is found that the modified double Burr Type XII-
logistic sigmoid growth model is the appropriate model with the largest 
Rଶ, ME , and the smallest  MSE, RMSE.  

In order to compare the proposed models with the existing models, 
the corrected Akaike information criterion (AICc) is used. Also, the 
likelihood ratio test (LRT) is used to study the significance of the 
parameters for these models. The results of AICc and LRT are given in 
Table 22. 

Table 22: The ܋۷۱ۯ and  p-values of the LRT test for different double 
sigmoid growth models. 
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 As observed from Table 22, it is clear that the LRT is significant 
) − ݁ݑ݈ܽݒ <  0.05) for all different double sigmoid growth models and 
the modified double Burr Type XII-logistic sigmoid growth model is the 
best model for describing these data with the smallest value of AICc.  

6. Conclusions 

In this paper, new double sigmoidal growth curves were proposed 
based on the Burr Type XII distribution. In addition, for modeling the 
new proposed curves, the procedure of summation of two single 
sigmoidal growth curves was considered. Estimating the parameters of 
the new proposed models was provided by NLE and ML estimation 
methods. The performance of the proposed models was evaluated through 
a simulation study. The evaluation was based on the RAB, REMSE, and 
the A. C. I for each estimate. The COVID-19 data set was analyzed to 
demonstrate how the proposed models can be used in practice. The results 
showed that the new proposed model, the modified double Burr Type 
XII–logistic sigmoid growth model is superior over the other models with 
respect to Rଶ, MSE, RMSE, ME, and AICc. 
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