اٌّشاعغ Enders, C.K. (2011). Missing Not at Random Models for Latent Growth Curve Analyses. Psychological Methods,Vol. 16, No. 1, 1–16. Fitzmaurice, G. (2008). Missing data: implications for analysis. Nutrition, 24, 200-202. Gad, A.M. and Darwish, N.M. (2013). A Shared Parameter Model for Longitudinal Data with Missing Values. American Journal of 17 Applied Mathematics and Statistics, Vol. 1, No. 2, 30-35. Hair, J., Anderson, R., Tatham, R. and Black, W. (1998). Multivariate Data Analysis. Upper Saddle River, N.J.: Prentice Hall. Hedeker, D. and Gibbons R. (2006). Longitudinal Data Analysis. John Wily& Sons, Inc., Hoboken, New Jersey. Ibrahim, J. G., Chen, M. H., Lipsitz, S. R. and Herring A. H. (2005). Missing-Data Methods for Generalized Linear Models: A Comparative Review. Journal of the American Statistical Association, Vol. 100, No. 469, 332-346 Little R. J. A. (1995). Modeling the drop-out mechanism in repeatedmeasures studies. J. Am Stat Assoc; 90:1113– 1121. Little, R. J. A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data (2nd ed.). New York: Wiley. Ramadan, M. (2005). Extentions of the expectationmaximization (EM) algorithm using a baysian approach. Unpublished M.Sc Dissertation, Benha University, Dept. of Statistic. 18 Rubin, D.B. (1976). Inference and missing data. Biometrika, 63,581-592. Rubin D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York, NY, Wiley. Sheir, K., Elhalwagy, S., Abo-Elghar, M. (2008) Evaluation of a synchronous twin-pulse technique for shock wave lithotripsy: a prospective randomized study of effectiveness and safety in comparison to standard single-pulse technique. B J U I N T E R N A T I O N A L | 101 , 1 4 2 0 – 1 4 2 5 Tshering, S., Okazaki, T., and Endo, S. (2013). A Method to Identify Missing Data Mechanism in Incomplete Dataset. IJCSNS International Journal of Computer Science and Network Security, 13, No.3. Wu, L. (2009). Mixed effects models for complex data. London: Chapman & Hall