On the Modified Almost Unbiased Ridge Estimator in Linear Regression Model

نوع المستند : المقالة الأصلية

المؤلف

Faculty of Commerce (Girls’ Branch) Al-Azhar University, Tafahna Al-Ashraf, Egypt.

المستخلص

In order to overcome the negative effects caused by multicollinearity between the explanatory variables in the linear regression model, a new estimator namely modified almost unbiased ridge estimator is presented with its statistical characteristics in this paper. Also, the matrix mean squared error and squared bias criteria are adopted as a basis for comparisons between the new estimator and the ordinary least squares estimator, ridge estimator, and almost unbiased ridge estimator. Further, selection of the biasing parameter is discussed. Moreover, to check the performance of the new estimator versus the other estimators considered in this paper in the sense of scalar mean squared error, a study of Monte Carlo simulation and a real data example are conducted. The results indicate that in terms of scalar mean squared error, the new estimator, modified almost unbiased ridge estimator outperforms the others in use. So, it can be safely used when multicollinearity exists in a linear regression model.

الكلمات الرئيسية

الموضوعات الرئيسية


In linear regression model, the problem of multicollinearity occurs in the existence of linear dependencies between the explanatory variables. It is well known that ordinary least squares (OLS) estimation is the preferred method for estimating the parameters in linear regression model since it gives an unbiased estimator with minimum variance [Johnson and Wichern (2007)]. However, when the problem of multicollinearity exists, the ordinary least squares estimator (OLSE) will be unstable with high variance [Vinod and Ullah (1981)].

To circumvent the multicollinearity problem in linear regression, many popular estimators of biased estimation methods have been introduced. These estimators include the Stein estimator by Stein (1956), the principal component estimator by Massy (1965), the ridge estimator by Hoerl and Kennard (1970), the Liu estimator by Liu (1993), and the Liu-type estimator by Liu (2003). Also, two versions of the two-parameter estimator by Özkale and Kaçiranlar (2007) and Yang and Chang (2010), the ridge-type estimator by Kibria and Lukman (2020), the modified one-parameter Liu estimator by Lukman et al. (2020), the generalized Kibria-Lukman estimator by Dawoud et al. (2022), and the new two-parameter estimator by Owolabi et al. (2022) were introduced for the linear regression model.

Another set of suggested estimators for dealing with multicollinearity are the almost unbiased estimators. For the linear regression model, the almost unbiased ridge estimator (AURE) by Singh et al. (1986), the almost unbiased Liu estimator by Alheety and Kibria (2009), the almost unbiased ridge-type principal component estimator and the almost unbiased Liu-type principal component estimator by Li and Yang (2014), the modified almost unbiased Liu estimator by Armairajan and Wijekoon (2017), and the almost unbiased Liu principal component estimator by Ahmed et al. (2021) were presented.

In this paper, a new estimator namely modified almost unbiased ridge estimator (MAURE) is proposed for overcoming the effects of multicollinearity in linear regression.

This paper is structured as follows. In Section 2, for linear regression model, the OLSE, RE, and AURE and their statistical characteristics are discussed. In Section 3, the new estimator, MAURE is presented. In Section 4, the superiority of the MAURE over the OLSE, RE, AURE based on the criteria of matrix mean squared error (MMSE) and squared bias (SB) is provided. In Section 5, selection of the biasing parameter is given. In Section 6, a study of Monte Carlo simulation is performed to compare the performance of the new estimator, MAURE with other considered estimators: OLSE, RE, and AURE in terms of scalar mean squared error (SMSE). Also, a real data example is included in Section 7. Finally, in Section 8, the conclusion is given.

  1. Statistical Methodology

The linear regression model has the following standard form:

                                                                                             (1)

where  is a  vector of response variable,  is a  full rank matrix of  observations on   explanatory variables,  is a  vector of unknown regression coefficients, and  is a  vector of random error with mean vector  and covariance matrix ,  is an  identity matrix.

By considering the OLS method for estimating the regression coefficients, the OLSE of   can be obtained as follows:

                                                                                     (2)

where .

The  is an unbiased estimator and its covariance matrix is given as

                                           .                                  (3)

The MMSE of  is as follows:

                           (4)

                                        

where denotes the bias vector.

Also, the SMSE of  is given as follows:

                                                      (5)

                                                       

where  are the eigenvalues of V.

When the model (1) is suffering from multicollinearity because of correlated explanatory variables, the OLSE becomes biased and has high variance, which leads to unstable parameters estimates.

For tackling the effect of multicollinearity in linear regression model, Hoerl and Kennard (1970) introduced the RE which is defined as follows:

                                                                      (6)

                                              

where , and  is the biasing parameter called the ridge parameter, .

The following statistical characteristics belong to the RE:

                                                                                       (7)

                                          B                                     (8)

                                                      

                                                       (say)

                                      Cov                                (9)

                                      (10)

                                                             

and

                                                           (11)

                                                  

where  is the th element of  and  is an orthogonal matrix defined as .

Based on the following definition, the AURE is proposed by Singh et al. (1986) in linear regression model.

Definition 1. Assume that  is a biased estimator of  and  is the bias vector of . Then, the almost unbiased estimator of  is . [Kadiyala (1984)]

The AURE is defined as follows:

                                                                                 (12)

where .

The statistical characteristics of the AURE are given as follows:

                                                                                  (13)

                                      B                                    (14)

                                                       

                                                       (say)

                                  Cov                                (15)

                       (16)

                                                          

and

                                                   (17)

                                           

  1. The New Estimator

In this section, a new almost unbiased estimator, MAURE is proposed based on the RE and AURE as follows:

                                                                                   (18)

                                                         

The new estimator, MAURE has the following characteristics:

                                                                          (19)

                    B                                              (20)

                                      

                                       (say)

                              Cov                       (21)

             (22)

                                               

and

                                              (23)

                  

  1. Superiority of the MAURE

Based on the MMSE and SB, the following comparisons are performed.

 

4.1 MMSE comparisons

      When the comparison between any two estimators and  of  is performed by the criterion of MMSE, the following Lemmas can be used:

Lemma 1. Suppose that  and are  matrices such that , and . Then,  if and only if . [Rao et al. (2008)]

Lemma 2. For two estimators and  of , suppose that  is positive definite. Then,  is non-negative definite if and only if , where  and  denote the bias vectors of and  respectively. [Trenkler and Toutenburg (1990)]

The following comparisons are performed between the new estimator, MAURE and the OLSE, RE, and AURE by the MMSE criterion.

3.1.1        The MMSE comparison between the OLSE and MAURE

Using (4) and (22), the MMSE difference of the OLSE and MAURE is given by

 

            ( 24)

  

  

where  .

Then, according to Lemma 2, Theorem 1 is stated as follows:

Theorem 1. When , the MAURE is superior to OLSE based on  the MMSE criterion if and only if  .

Proof: Since  and  are positive definite matrices, then,  according to Lemma 1 if and only if . Consequently, from Lemma 2,
 is a non-negative definite matrix if and only if .

3.1.2        The MMSE comparison between the RE and MAURE

Using (10) and (22), the MMSE difference of the RE and MAURE is as follows:

 

          

                                                               (25)

          

where  , and .

Then, Theorem 2 is stated as follows:

Theorem 2. When , the MAURE is superior to RE based on the MMSE criterion if and only if  .

Proof: Since  and  are positive definite matrices, then,  according to Lemma 1 if and only if . Consequently, from Lemma 2,  is a non-negative definite matrix if and only if

.

3.1.3        The MMSE comparison between the AURE and MAURE

Using (16) and (22), the MMSE difference of the AURE and MAURE is given as follows:

 

            

                                                               (26)

            

where  .

Then, Theorem 3 is stated as follows:

Theorem 3. When , the MAURE is superior to AURE based on the MMSE criterion if and only if .

Proof: Since  and  are positive definite matrices, then, from Lemma 1,  if and only if . Consequently, by Lemma 2,  is a non-negative definite matrix if and only if

.

3.2   Squared bias comparisons

Based on the SB criterion, the following comparisons are discussed between the MAURE and the RE and AURE.

3.2.1        The SB comparison between the RE and MAURE

From (8) and (20), the difference of SB between the RE and MAURE is given as follows:

 

                                      .          (27)

Then, Theorem 4 is given as follows:

Theorem 4. Under SB criterion,  for .

Proof: Since, the difference of SB between the RE and MAURE is

 

                                              

                                             

where .

Therefore, for , .

3.2.2        The SB comparison between the AURE and MAURE

From (14) and (20), the difference of SB between the AURE and MAURE is given by

 

                                      .          (28)

Then, Theorem 5 is stated as follows:

Theorem 5. Under SB criterion,  for .

Proof: Since, the difference of SB between the AURE and MAURE is

 

                                            

                                            

where .

Therefore, for , .

 

 

  1. Selection of  Biasing Parameter

For determining the biasing parameter , many methods have been proposed. Some of the more popular of these methods are considered as follows:

Hoerl and Kennard (1970) suggested the following estimator of :

                                                                                            (29)

where , and  is the maximum value of .

Hoerl et al. (1975) suggested an alternative estimator as follows:

                                                     .                                        (30)

In Khalaf and Shukur (2005), the following estimator was proposed:

                                          .                            (31)

In addition, Alkhamisi et al. (2006) proposed an estimator of  as follows:

                                       (32)

Further, Muniz and Kibria (2009) suggested the following estimator:

                                  .                            (33)

  1. Monte Carlo Simulation Study

A Monte Carlo simulation study is conducted using the R 4. 0. 3 programme to evaluate the performance of the new estimator, MAURE in the linear regression model against the OLSE, RE, and AURE in the sense of SMSE.

The explanatory variables are generated following McDonald and Galarneau (1975) as follows:

                (34)

where represents the correlation degree between any two explanatory variables, and  is the independent pseudo-random variable.

The response variable is obtained as follows:

                (35)

where , and the coefficient  is chosen so that , and , where  following Kibria (2003).

For  and  explanatory variables, different values of  and , different sample sizes , and , and different values of error variance  and  are considered.

For a combination of the values of , and , the generated data are repeated  times and the SMSE is computed as follows:

                                                             (36)

where  is the estimated value of  by any estimator in the rth replication.

The estimated SMSE values for all estimators with  and the combination of , and  respectively are given in Tables 1-9.

As Tables 1-9 show, the values of the estimated SMSE of all estimators: OLSE, RE, AURE, and MAURE increase as  increases. Also, regarding , it is clear that there is an increase in the estimated values of SMSE for all estimators when  increases. Regarding the number of explanatory variables , there is an increase in the estimated SMSE of all estimators as  increases. While, regarding the sample size , the estimated values of SMSE decrease for all estimators as  increases. Additionally, the new estimator, MAURE has the best performance among the OLSE, RE, and AURE in all cases in the sense of SMSE, and the RE has better performance than the AURE. Furthermore, for different selection formulas of  estimators for RE, AURE, and MAURE, the  outperforms the other estimators as it has the lowest SMSE values. Moreover, the MAURE with  achieves the best performance compared to the RE, AURE, and OLSE in terms of SMSE.

Table 1. Estimated SMSE values when  and

 

Estimator

   

 

 

   

0.80

0.90

0.99

0.80

0.90

0.99

 

OLSE

0.351048

0.673147

7.570923

0.851854

1.640154

15.913152

 

RE

0.277766

0.455258

4.146347

0.595955

1.047394

9.065484

 

AURE

0.339372

0.615007

6.137674

0.779581

1.423234

13.005796

 

MAURE

0.269706

0.424826

3.684082

0.559983

0.967068

8.167809

 

RE

0.188942

0.283050

2.038223

0.296838

0.471601

3.270827

 

AURE

0.288936

0.478880

3.958932

0.507166

0.848831

6.384525

 

MAURE

0.164448

0.228192

1.427405

0.235147

0.356344

2.260312

 

RE

0.344251

0.641357

5.574217

0.797512

1.420743

10.274806

 

AURE

0.350962

0.672130

7.156683

0.849215

1.616724

13.983278

 

MAURE

0.344167

0.640408

5.322501

0.795135

1.402247

9.500092

 

RE

0.350135

0.671090

7.540886

0.846091

1.626873

15.763641

 

AURE

0.351046

0.673143

7.570847

0.851825

1.640077

15.912171

 

MAURE

0.350133

0.671086

7.540811

0.846062

1.626796

15.762673

 

RE

0.349974

0.670427

7.512269

0.846179

1.625615

15.695905

 

AURE

0.351046

0.673140

7.570631

0.851826

1.640062

15.911075

 

MAURE

0.349971

0.670420

7.511980

0.846151

1.625524

15.693869

Table 2. Estimated SMSE values when  and

 

Estimator

   

 

 

   

0.80

0.90

0.99

0.80

0.90

0.99

 

OLSE

3.039852

6.330734

69.122354

7.482948

15.439034

145.920237

 

RE

1.720351

3.483515

37.395874

4.364396

8.896725

82.888974

 

AURE

2.522118

5.152129

55.578869

6.218038

12.736390

118.704602

 

MAURE

1.536798

3.096136

33.137072

3.951658

8.026685

74.689508

 

RE

0.966706

1.793912

17.340391

1.791992

3.293641

29.347271

 

AURE

1.781511

3.424272

34.179466

3.419519

6.399360

57.438825

 

MAURE

0.715599

1.279011

11.920441

1.275172

2.291857

20.231654

 

RE

2.979897

6.020608

50.722076

6.999737

13.269624

93.981254

 

AURE

3.039070

6.320577

65.247012

7.458809

15.199968

127.847661

 

MAURE

2.979137

6.011147

48.382537

6.978083

13.082144

86.839344

 

RE

3.032093

6.311004

68.852863

7.433542

15.311411

144.560133

 

AURE

3.039839

6.330694

69.121672

7.482704

15.438289

145.911325

 

MAURE

3.032080

6.310964

68.852185

7.433301

15.310676

144.551342

 

RE

3.030598

6.304222

68.586192

7.433669

15.297053

143.905224

 

AURE

3.039834

6.330662

69.119650

7.482705

15.438111

145.900621

 

MAURE

3.030580

6.304150

68.583517

7.433429

15.296143

143.886001

 

 

 

 

Table 3. Estimated SMSE values when  and

 

Estimator

   

 

 

   

0.80

0.90

0.99

0.80

0.90

0.99

 

OLSE

8.630817

17.899826

194.851426

21.288998

43.234012

400.941836

 

RE

4.783869

9.845366

107.513769

12.402166

25.129168

227.590711

 

AURE

7.086631

14.542416

158.262542

17.651156

35.879476

326.970650

 

MAURE

4.255089

8.756691

95.814029

11.230123

22.705321

204.764437

 

RE

2.463440

4.743140

49.689387

4.754952

9.215763

79.683001

 

AURE

4.712497

9.223908

97.519096

9.287703

17.956712

155.978852

 

MAURE

1.749650

3.310729

34.336293

3.290024

6.391755

54.896390

 

RE

8.460256

17.006468

143.538171

19.894838

37.265187

257.908949

 

AURE

8.628584

17.870437

184.244358

21.219670

42.581609

351.607296

 

MAURE

8.458086

16.979093

137.079943

19.832607

36.753015

238.120529

 

RE

8.608849

17.842800

194.072116

21.144586

42.882064

397.214581

 

AURE

8.630780

17.899709

194.849440

21.288282

43.231966

400.917430

 

MAURE

8.608813

17.842684

194.070142

21.143876

42.880042

397.190504

 

RE

8.604589

17.823086

193.298586

21.144802

42.841971

395.410324

 

AURE

8.630765

17.899614

194.843527

21.288284

43.231472

400.887925

 

MAURE

8.604537

17.822876

193.290772

21.144095

42.839465

395.357493

 

 

 

 

Table 4. Estimated SMSE values when  and

 

Estimator

   

 

 

   

0.80

0.90

0.99

0.80

0.90

0.99

 

OLSE

0.197499

0.421659

4.389635

0.533123

1.151260

11.165997

 

RE

0.173133

0.325312

2.429037

0.422386

0.801352

6.437291

 

AURE

0.195383

0.405501

3.607418

0.512868

1.051568

9.253197

 

MAURE

0.171399

0.314325

2.157773

0.409258

0.753415

5.806203

 

RE

0.128588

0.216762

1.309512

0.235296

0.399197

2.566514

 

AURE

0.179118

0.342233

2.504849

0.380990

0.699534

5.070289

 

MAURE

0.118753

0.185593

0.936808

0.196278

0.312340

1.760954

 

RE

0.196425

0.415713

3.862609

0.522184

1.094061

8.457010

 

AURE

0.197495

0.421606

4.345748

0.532947

1.149028

10.570899

 

MAURE

0.196421

0.415661

3.826253

0.522014

1.092013

8.113700

 

RE

0.197391

0.421378

4.386405

0.532663

1.150074

11.152656

 

AURE

0.197499

0.421659

4.389633

0.533123

1.151259

11.165984

 

MAURE

0.197390

0.421377

4.386404

0.532662

1.150073

11.152643

 

RE

0.197375

0.421297

4.383190

0.532581

1.149772

11.145165

 

AURE

0.197499

0.421659

4.389628

0.533122

1.151259

11.165967

 

MAURE

0.197374

0.421296

4.383184

0.532580

1.149771

11.145135

 

                                                                                                   

 

 

Table 5. Estimated SMSE values when  and

 

Estimator

   

 

 

   

0.80

0.90

0.99

0.80

0.90

0.99

 

OLSE

1.836521

3.721732

41.420301

4.697253

9.744537

106.245569

 

RE

1.088320

2.059638

23.262280

2.799464

5.690927

61.708367

 

AURE

1.582763

3.073866

34.162841

3.991788

8.142378

88.450082

 

MAURE

0.980847

1.825556

20.794584

2.541842

5.146614

55.734592

 

RE

0.644187

1.126178

11.224147

1.236926

2.391282

23.732535

 

AURE

1.178257

2.150797

21.976346

2.386128

4.667407

46.945341

 

MAURE

0.482374

0.805348

7.795781

0.875519

1.667799

16.266963

 

RE

1.826005

3.669841

36.389417

4.598294

9.265204

80.357800

 

AURE

1.836483

3.721261

41.003378

4.695617

9.725614

100.557588

 

MAURE

1.825967

3.669380

36.043237

4.596718

9.247873

77.064373

 

RE

1.835496

3.719337

41.388529

4.693235

9.734803

106.118039

 

AURE

1.836521

3.721730

41.420286

4.697250

9.744529

106.245452

 

MAURE

1.835495

3.719336

41.388514

4.693232

9.734795

106.117922

 

RE

1.835334

3.718626

41.356306

4.692484

9.732228

106.044581

 

AURE

1.836520

3.721730

41.420238

4.697249

9.744524

106.245278

 

MAURE

1.835333

3.718624

41.356244

4.692480

9.732216

106.044291

 

 

 

 

Table 6. Estimated SMSE values when  and

 

Estimator

   

 

 

   

0.80

0.90

0.99

0.80

0.90

0.99

 

OLSE

4.961537

10.363294

104.835006

13.043441

27.648155

284.209160

 

RE

2.755104

5.707858

56.151382

7.647085

16.322096

164.782091

 

AURE

4.109348

8.492974

84.567274

10.950440

23.168192

235.838522

 

MAURE

2.443945

5.067522

49.515441

6.921420

14.817160

148.951511

 

RE

1.517399

2.828932

25.404208

3.184078

6.514651

61.970643

 

AURE

2.887524

5.569688

51.575793

6.276990

12.873790

124.164654

 

MAURE

1.087532

1.949507

16.826291

2.195238

4.469673

41.748776

 

RE

4.934403

10.214606

91.781732

12.770174

26.263339

215.154084

 

AURE

4.961440

10.361928

103.725956

13.038933

27.593654

269.020124

 

MAURE

4.934307

10.213267

90.864164

12.765828

26.213394

206.403098

 

RE

4.958895

10.356420

104.755305

13.032356

27.619745

283.863684

 

AURE

4.961536

10.363291

104.834967

13.043434

27.648132

284.208842

 

MAURE

4.958894

10.356417

104.755266

13.032349

27.619723

283.863366

 

RE

4.958476

10.354372

104.674354

13.030276

27.612206

283.664253

 

AURE

4.961535

10.363289

104.834848

13.043431

27.648119

284.208368

 

MAURE

4.958475

10.354368

104.674197

13.030266

27.612170

283.663463

                                                                                         

 

 

 

Table 7. Estimated SMSE values when  and

 

Estimator

   

 

 

   

0.80

0.90

0.99

0.80

0.90

0.99

 

OLSE

0.098297

0.189498

1.820089

0.200284

0.419871

4.255156

 

RE

0.091767

0.164256

1.028742

0.179225

0.333126

2.445291

 

AURE

0.097999

0.187089

1.523711

0.198416

0.404147

3.499996

 

MAURE

0.091498

0.162308

0.916877

0.177694

0.322692

2.210073

 

RE

0.075470

0.120889

0.575493

0.116733

0.185585

1.038406

 

AURE

0.094398

0.170006

1.080374

0.167233

0.294187

1.969621

 

MAURE

0.072824

0.110878

0.420883

0.104561

0.155906

0.750040

 

RE

0.098165

0.188863

1.751707

0.199511

0.415245

3.802195

 

AURE

0.098297

0.189496

1.818359

0.200282

0.419832

4.215825

 

MAURE

0.098164

0.188861

1.750070

0.199509

0.415207

3.769677

 

RE

0.098284

0.189470

1.819776

0.200240

0.419749

4.253699

 

AURE

0.098297

0.189498

1.820089

0.200284

0.419871

4.255155

 

MAURE

0.098283

0.189469

1.819775

0.200237

0.419748

4.253698

 

RE

0.098281

0.189460

1.819392

0.200234

0.419728

4.252935

 

AURE

0.098297

0.189498

1.820088

0.200284

0.419871

4.255155

 

MAURE

0.098280

0.189457

1.819390

0.200233

0.419726

4.252934

 

 

 

 

Table 8. Estimated SMSE values when  and

 

Estimator

   

 

 

   

0.80

0.90

0.99

0.80

0.90

0.99

 

OLSE

0.861388

1.657872

17.218996

1.786755

3.707291

40.984078

 

RE

0.586259

0.976489

9.348854

1.153346

2.190208

23.693803

 

AURE

0.790002

1.419442

13.937248

1.572577

3.113270

33.835942

 

MAURE

0.548799

0.879685

8.285206

1.067440

1.988487

21.429132

 

RE

0.369010

0.564186

4.484363

0.550239

0.943431

8.734934

 

AURE

0.625578

1.037606

8.880905

1.002341

1.795227

17.309635

 

MAURE

0.297791

0.421426

3.073438

0.415131

0.678498

5.958965

 

RE

0.860214

1.652257

16.579394

1.779666

3.665643

36.538292

 

AURE

0.861387

1.657860

17.202946

1.786733

3.706934

40.604536

 

MAURE

0.860213

1.652244

16.564196

1.779645

3.665293

36.223355

 

RE

0.861274

1.657624

17.216060

1.786334

3.706212

40.969344

 

AURE

0.861388

1.657872

17.218996

1.786755

3.707290

40.984074

 

MAURE

0.861273

1.657622

17.216059

1.786333

3.706211

40.969340

 

RE

0.861247

1.657517

17.212426

1.786301

3.706007

40.961513

 

AURE

0.861388

1.657872

17.218994

1.786755

3.707290

40.984068

 

MAURE

0.861246

1.657516

17.212424

1.786300

3.706006

40.961504

 

 

 

 

Table 9. Estimated SMSE values when  and

 

Estimator

   

 

 

   

0.80

0.90

0.99

0.80

0.90

0.99

 

OLSE

2.380186

4.431373

49.868205

4.962694

11.010611

107.951265

 

RE

1.370403

2.367388

27.488886

2.988804

6.480510

61.518124

 

AURE

2.015829

3.570195

40.706469

4.215498

9.230612

88.625519

 

MAURE

1.226222

2.082414

24.443784

2.727965

5.875739

55.329943

 

RE

0.764650

1.245046

13.157329

1.312507

2.564345

22.921840

 

AURE

1.434322

2.419482

25.807951

2.522152

5.011295

45.083946

 

MAURE

0.556001

0.872252

9.116656

0.932153

1.781586

15.811685

 

RE

2.376862

4.416384

48.002718

4.943094

10.883740

96.471783

 

AURE

2.380184

4.431340

49.821361

4.962634

11.009521

106.960320

 

MAURE

2.376859

4.416351

47.958358

4.943033

10.882671

95.651511

 

RE

2.379865

4.430710

49.859615

4.961528

11.007315

107.914116

 

AURE

2.380186

4.431373

49.868204

4.962694

11.010610

107.951255

 

MAURE

2.379864

4.430709

49.859614

4.961527

11.007314

107.914106

 

RE

2.379788

4.430425

49.848977

4.961438

11.006688

107.894352

 

AURE

2.380186

4.431373

49.868200

4.962694

11.010610

107.951242

 

MAURE

2.379787

4.430424

49.848972

4.961437

11.006687

107.894330

 

 

 

 

  1. Real Data Example

In this section, a real data set of Total National Research and Development Expenditures is considered as a percent of Gross National Product by Country: 1972-1986 according to Gruber (1998) and later analyzed by Li and Yang (2011) and Arumairajan and Wijekoon (2017). This data set involves  observations. The response variable  as well as the four explanatory variables  and  are defined as follows: y is the percentage spent by the United States,  is the percent spent by France, is the percent spent by West Germany,  is the percent spent by Japan, and  is the percent spent by the former Soviet Union.

The statistic value of the Shapiro-Wilk normality test equals to  with , which indicates the normality of  the response variable  at  significance level.

The correlation matrix of the explanatory variables is as follows:

 

It is obvious that there are correlations greater than  between , , and  which indicates the existence of high relationship between the explanatory variables.

Also, for checking the presence of multicollinearity, the condition number () of the data is computed by

                                     (37)

where  and  are the largest and smallest eigenvalues of  respectively.

Since the eigenvalues of  matrix are obtained as , , , and , the value of is  shows the presence of severe multicollinearity in this data.

The estimated coefficients and SMSE of the OLSE, RE, AURE, and MAURE for  are given in Table 10.

Table 10. Estimated coefficients and SMSE of the estimators

Estimator

       

SMSE

OLSE

0.64546

0.08959

0.14356

0.15262

0.08079

 

 

 

 

 

 

RE

 

0.58264

0.10653

0.16818

0.15972

0.06280

 

 

0.54318

0.11792

0.18291

0.16415

0.05885

 

 

0.58265

0.10653

0.16818

0.15972

0.06280

 

 

0.58814

0.10498

0.16608

0.15910

0.06380

 

 

0.57288

0.10930

0.17188

0.16082

0.06130

 

 

 

 

 

 

 

AURE

 

0.63641

0.08736

0.14075

0.15230

0.07698

 

 

0.62154

0.08378

0.13640

0.15180

0.07162

 

 

0.63642

0.08736

0.14075

0.15230

0.07699

 

 

0.63793

0.08773

0.14121

0.15235

0.07759

 

 

0.63339

0.08663

0.13985

0.15219

0.07581

 

 

 

 

 

 

 

MAURE

 

0.57436

0.10401

0.16535

0.15939

0.06133

 

 

0.52256

0.11086

0.17564

0.16328

0.05845

 

 

0.57436

0.10401

0.16535

0.15939

0.06133

 

 

0.58119

0.10290

0.16371

0.15882

0.06240

 

 

0.56199

0.10588

0.16813

0.16037

0.05981

 

Table 10 shows that the new estimator, MAURE has the smallest SMSE values than other estimators for all values of .

  1. Conclusion

In this paper, for overcoming multicollinearity in linear regression model, a new estimator, MAURE was presented with its statistical characteristics. By considering the criteria of MMSE and SB, the comparisons between the new estimator, MAURE and the OLSE, RE, and AURE were provided. Further, a study of Monte Carlo simulation and a real data example were conducted to evaluate the performance of the MAURE versus the other existing estimators under the SMSE criterion. The results showed the superiority of the new estimator, MAURE over all existing estimators in terms of SMSE. So, the MAURE can be safely used when multicollinearity exists in a linear regression model. 

  1. Ahmed, A. E., Ali, H. M., and Amal, H. A. (2021). Almost Unbiased Liu Principal Component Estimator in the Presence of Multicollinearity and Autocorrelation. The Egyptian Statistical Journal, 64(1), 21-33.
  2. Alheety, M. I., and Kibria, B. M. G. (2009). On the Liu and Almost Unbiased Liu Estimators in the Presence of Multicollinearity with Heteroscedastic or Correlated Errors. Surveys in Mathematics and its Applications, 4, 155-167.
  3. Alkhamisi, M., Khalaf, G., and Shukur, G. (2006). Some Modifications for Choosing Ridge Parameters. Communications in Statistics-Theory and Methods, 35(11), 2005-2020.
  4. Arumairajan, S., and Wijekoon, P. (2017). Modified Almost Unbiased Liu Estimator in Linear Regression Model. Communications in Mathematics and Statistics, 5(3), 261-276.
  5. Dawoud, I., Abonazel, M. R., and Awwad, F. (2022). Generalized Kibria-Lukman Estimator: Method, Simulation, and Application. Frontiers in Applied Mathematics and Statistics, 8, 1-6.
  6. Gruber, M. H. J. (1998). Improving Efficiency by Shrinkage: The James-Stein and Ridge Regression Estimators. Dekker, Inc., New York.
  7. Hoerl, A. E., and Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12(1), 55-67.
  8. Hoerl, A. E., Kennard, R. W., and Baldwin, K. F. (1975). Ridge Regression: Some Simulations. Communications in Statistics, 4(2), 105-123.
  9. Johnson, R. A., and Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. Sixth Edition, Pearson Prentice Hall, New Jersey.
  10. Kadiyala, K. (1984). A Class of Almost Unbiased and Efficient Estimators of Regression Coefficients. Economics Letters, 16, 293-296.
  11. Khalaf, G., and Shukur, G. (2005). Choosing Ridge Parameter for Regression Problems. Communications in Statistics-Theory and Methods, 34(5), 1177-1182.
  12. Kibria, B. M. G. (2003). Performance of Some New Ridge Regression Estimators. Communications in Statistics-Simulation and Computation, 32(2), 419-435.
  13. Kibria, B. M. G., and Lukman, A. F. (2020). A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications. Scientifica, 2020(1), 1-16.
  14. Li, Y., and Yang, H. (2011). Two Kinds of Restricted Modified Estimators in Linear Regression Model. Journal of Applied Statistics, 38(7), 1447-1454.
  15. Li, Y., and Yang, H. (2014). Two Classes of Almost Unbiased Type Principal Component Estimators in Linear Regression Model. Journal of Applied Mathematics, 2014(1), 1-6.
  16. Liu, K. (1993). A New Class of Biased Estimate in Linear Regression. Communications in Statistics-Theory and Methods, 22(2), 393-402.
  17. Liu, K. (2003). Using Liu-Type Estimator to Combat Collinearity. Communications in Statistics-Theory and Methods, 32(5), 1009-1020.
  18. Lukman, A. F., Kibria, B. M. G., Ayinde, K., and Jegede, S. L. (2020). Modified One-Parameter Liu Estimator for the Linear Regression Model. Modelling and Simulation in Engineering, 2020(1), 1-17.
  19. Massy, W. F. (1965). Principal Components Regression in Exploratory Statistical Research. Journal of the American Statistical Association, 60(309), 234-256.
  20. McDonald, G. C., and Galarneau, D. I. (1975). A Monte Carlo Evaluation of Some Ridge-Type Estimators. Journal of the American Statistical Association, 70(350), 407-416.
  21. Muniz, G., and Kibria, B. M. G. (2009). On Some Ridge Regression Estimators: An Empirical Comparisons. Communications in Statistics-Simulation and Computation, 38(3), 621-630.
  22. Owolabi, A. T., Ayinde, K., Idowu, J. I., Oladapo, O. J., and Lukman, A. F. (2022). A New Two-Parameter Estimator in the Linear Regression Model with Correlated Regressors. Journal of Statistics Applications & Probability,11(2), 499-512.
  23. Özkale, M. R., and Kaçiranlar, S. (2007). The Restricted and Unrestricted Two-Parameter Estimators. Communications in Statistics-Theory and Methods, 36(15), 2707-2725.
  24. Rao, C. R., Toutenburg, H., Shalabh, and Heumann, C. (2008).Linear Models and Generalizations: Least Squares and Alternatives. Third Edition, Springer-Verlag, Berlin.
  25. Singh, B., Chaubey, Y. P., and Dwivedi, T. D. (1986). An Almost Unbiased Ridge Estimator. The Indian Journal of Statistics, 48(3), 342-346.
  26. Stein, C. (1956). Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1, 197-206.
  27. Trenkler, G., and Toutenburg, H. (1990). Mean Squared Error Matrix Comparisons between Biased Estimators-An Overview of Recent Results. Statistical Papers, 31(1), 165-179.
  28. Vinod, H. D., and Ullah, A. (1981). Recent Advances in Regression Methods. Dekker, New York.

Yang, H., and Chang, X. (2010). A New Two-Parameter Estimator in Linear Regression. Communications in Statistics-Theory and Methods, 39(6), 923-934